
Lyapunov-Based Controller Synthesis and Stability Analysis for the
Execution of High-Speed Multi-Flip Quadrotor Maneuvers
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Abstract— We present a method for the synthesis and stability
analysis of automatic controllers capable of autonomously flying
a 19-gram quadrotor during the execution of high-speed multi-
flip maneuvers. The discussed approach for design and analysis
is based on Lyapunov’s direct method, numerical results and
experimental data. Here, the resulting real-time closed-loop
scheme employs a linear time-invariant (LTI) controller that
stabilizes the nonlinear unstable dynamics of the open-loop
system while enabling high performance during aggressive
flight. In this approach, we define a parameterized quadratic
proto-Lyapunov function associated with the nonautonomous
closed-loop flyer’s dynamics that, for a set of feasible pa-
rameters, becomes Lyapunov. This parameterization allows for
the synthesis and selection of stabilizing controllers which are
tested through numerical simulation, employing an open-loop
plant model obtained from first principles and simple system
identification experiments. The suitability of the proposed
method is empirically demonstrated through several aggressive
autonomous flight experiments that include single, double and
triple flips about two different axes of the flyer.

I. INTRODUCTION

The vision of creating fully autonomous squadrons of
unmanned micro air vehicles (UMAVs) capable of operating
in highly unstructured environments will become possible
only when each individual flyer becomes proficient in the
autonomous execution of sophisticated high-speed maneu-
vers. In [1], we presented a series of experimental results
demonstrating high-speed maneuvers of a 19-gram quadrotor,
achieved with the use of a switching controller composed
of two linear time-invariant (LTI) subsystems. There, one
LTI sub-controller is employed during regular autonomous
flight, and the other sub-controller is used during high-
speed flipping. Here, we discuss in depth the method for
synthesizing the controller employed during aerobatic flight,
which is constructed upon Lyapunov’s direct method for
stability [2], [3].

Over the years, Lyapunov’s theory has been demonstrated
to be an effective tool for nonlinear system stability analysis
and feedback controller synthesis. In the case presented
here, after a control structure is chosen, stabilizing controller
parameters can be obtained by defining a parameterized
proto-Lyapunov function that, when combined with the use
of Lyapunov’s direct method, informs us of the stability prop-
erties of the closed-loop system dynamics. This proposed
synthesis method can be extended to formulate optimization
problems to obtain controllers that are not only stable,
but also make the system robust with respect to model
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uncertainty and external disturbances, while simultaneously
considering stability and performance. Parameterized proto-
Lyapunov functions can also be employed to synthesize
sets of simple controllers for the execution of sequenced
flight maneuvers constituting the primitives1 required for the
creation of autonomous behavior. Furthermore, the proposed
approach can be applied to the high-speed control of other
micro flyers such as the artificial insects in [6] and [7].

Recently, a significant amount of research has been pub-
lished on the dynamic modeling and control of quadro-
tors. In this context, numerous papers describe the use
of control techniques based on Lyapunov’s stability theory
[8]–[18], validated mostly through simulations or simple
non-aggressive flight experiments. This technical literature
includes backstepping nonlinear control [8]–[10], feedback-
linearization-based control [11], adaptive sliding-mode con-
trol [11], [12], adaptive fuzzy control [13], quaternion-based
proportional-derivative (PD) attitude control [14], nonlinear
geometric control [17] and neural-networks-based control
[18], to mention a few examples. The methods and ideas
presented in those publications represent interesting progress
on the understanding of quadrotor dynamics and control.
However, due to the lack of concrete empirical evidence and
compelling experimental results, their applicability is very
limited and not well suited for real-life scenarios. On the
other hand, advanced experimental research [19], [20] has
mostly ignored the fundamental issue of closed-loop system
stability from the theoretical perspective. In this paper, we
contribute the first step in a long-term research program
that aims to produce the experimental and theoretical tools
necessary for the creation of truly autonomous flying robots
that can operate in highly-unstructured time-varying noisy
environments.

The rest of the paper is organized as follows. Section II
discusses the nonlinear dynamics of the quadrotor.
Section III presents the proposed controller structure,
parameterized proto-Lyapunov function used for controller
design, proposed controller synthesis method based on
Lyapunov’s direct method, and attitude analysis. Section IV
presents simulation and experimental results. Conclusions
are drawn in Section V.

Notation–
• R, R+ denote the sets of reals and nonnegative reals.
• The symbols |·|, |·|2, ‖·‖2 and ‖·‖∞ denote the scalar

absolute value, vector 2-norm, matrix induced 2-norm
and matrix induced ∞-norm, respectively.

• Scalars are denoted by regular lower-case or upper-case
letters (e.g., m, Ω1). Vectors are denoted by bold lower-
case letters (e.g., ω). Matrices are denoted by bold
upper-case letters (e.g., KP). Quaternions are denoted

1Fundamental units or blocks of action as defined in [4] and [5].



Fig. 1: The flyer and frames of reference. N = {O0,n1,n2,n3} is
the inertial frame, B = {OB, b1, b2, b3} is the body frame, r indicates
the position of the flyer’s center of mass with respect to the inertial origin
O0 and {Ω1,Ω2,Ω3,Ω4} are the angular speeds of the rotors. The test
platform employed in the flight experiments is the Crazyflie 1.0 [21], which
weighs 19 grams and has a maximum propeller-tip-to-propeller-tip (PTPT)
distance of 13 cm. Due to symmetry, if the blade masses are neglected,
the axes {b1, b2, b3} coincide with the flyer’s principal axes of inertia;
therefore, the inertia matrix J when expressed in B is constant and diagonal.

by crossed bold lower-case letters (e.g.,
¯
q).

• The symbol ∗ denotes the quaternion product (e.g.,

¯
q∗̄p), as defined in [22].

• The letter s denotes the differentiation operator, and
equivalently, the Laplace variable.

• The letter t denotes continuous time, and t0, the initial
time of an experiment. We assume t ≥ 0.

II. OPEN-LOOP MODEL OF THE SYSTEM

In this section, we introduce the dynamic model of the
quadrotor, shown in Fig. 1, and discuss the underlying
assumptions behind its conception. To represent the kine-
matics and dynamics of the system, we define the inertial
frame N = {O0,n1,n2,n3} and the body-fixed frame
B = {OB, b1, b2, b3}, whose origin and axes coincide with
the quadrotor’s center of mass and principal axes, as depicted
in Fig. 1. Thrust is generated by four propellers rotating with
angular speeds {Ω1,Ω2,Ω3,Ω4}. Using these conventions, it
follows that the nonlinear dynamics of the flyer are given by

mr̈ = −mgn3 + φb3, (1)
Jω̇ = −ω × Jω + τ , (2)

where m is the total mass of the flyer; r, ṙ and r̈ are
the spatial position, velocity and acceleration of the flyer’s
center of mass with respect to, and expressed in, N ; g
is the gravitational acceleration constant; φ =

∑4
i=1 φi is

the magnitude of the total thrust force produced by the
four propellers, where φi denotes the magnitude of the
thrust force produced by the ith propeller; J is the robot’s
inertia matrix, which by neglecting the blade masses is
assumed constant and diagonal when expressed in B; ω is
the quadrotor’s angular velocity with respect to N with its
components expressed in B; and τ = [ τ1 τ2 τ3 ]

T is
the total torque applied by the rotors to the vehicle with its
components expressed in B.

As discussed in [1], τ and φ depend directly on the
propeller’s angular speeds {Ω1,Ω2,Ω3,Ω4} through the re-
lationship

% = Γϑ, (3)

where % =
[
φ τT

]T
, ϑ =

[
Ω2

1 Ω2
2 Ω2

3 Ω2
4

]T
, and

Γ is a 4 × 4 real matrix that depends on the quadrotor’s
geometry and experimentally identifiable parameters. See [1]
for further details on the structure of Γ. In the obtention
of the model described by (1) and (2), we ignore motor
latency, gyroscopic effects and aerodynamic effects produced
by the flyer’s translational motion. Also, by ignoring the
blade-flapping effect, the direction of the total thrust force,
φ, is assumed to be perpendicular to the b1-b2 plane and
aligned with the b3 axis. These simplifications allow for the
derivation of a nominal plant that reduces the complexity
of the dynamical analysis while facilitating the controller
design process. A complete model of the system, including
disturbances, will be discussed in a future publication.

Using the notion of quaternions as defined in [22], the
attitude kinematics of the flyer can be described as

˙
¯
q =

1

2
Q(

¯
q)ω, (4)

where
¯
q = [q0 q1 q2 q3]

T and

Q(
¯
q) =

−q1 −q2 −q3

q0 −q3 q2

q3 q0 −q1

−q2 q1 q0

 . (5)

This allows us to represent the entire dynamical system in
the standard state-space form as

χ̇ = ψ(χ,%), (6)

where χ =
[
rT ṙT

¯
qT ωT

]T
and % is given by (3). Note

that there are several implicit algebraic and physical facts in
the structure of (6), and its constituent sub-states, that are
important to emphasize. In (1), b3 depends on

¯
q, and in (2),

τ is strongly coupled with {φ1 φ2 φ3 φ4}. Also, the part of
the state-space model in (6) associated with ω is independent
of the rest of the system, and ω̇ = J−1 (τ − ω × Jω)
therefore evolves independently. Thus, ω can be seen as an
external input driving the angular position dynamics in (4),
and since b3 depends on

¯
q,

¯
q acts as an external input driving

the translational dynamics in (1). The characteristics of (6)
are key pieces of information used in the formulation of the
controller design method and stability analysis discussed in
the next section.

During the execution of a multi-flip maneuver, the quadro-
tor rises with a predefined initial upward speed and then
drops freely until the body rotation is completed, tracking
a desired angular velocity trajectory. In this process, the
direction of the thrust force changes quickly and periodically,
exerting no significant effect on the translational motion of
the flyer. Thus, gravity is assumed to be the only exter-
nal force applied to the flyer while multi-flipping at high
speeds. For this reason, in the proposed control scheme, the
translational dynamics of the flyer are kept in open-loop,
and the control problem of rotational motion is formulated
independently of the rest of the state. The multi-flip process
is explained in detail in [1].

III. CONTROL STRUCTURE, CONTROLLER SYNTHESIS,
STABILITY ANALYSIS, AND NOMINAL PERFORMANCE

A. Angular Velocity Dynamics and Closed-Loop Control

Considering the open-loop independence of (2) with re-
spect to the rest of the state-space system in (6), we propose
a control strategy based on the feedback stabilization of
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Fig. 2: Dynamics of the robot and feedback control scheme. The nonlinear dynamics associated with the flyer’s angular velocity are controlled employing
a reference model that computes a feasible desired torque τ d given a reference angular velocity ωd. Concurrently, deviations from the desired trajectory
ωd are compensated with a stabilizing feedback LTI MIMO controller with the form K(s) = KP + λs

s+λ
KI. The parameters in the entries of constant

diagonal matrices KP and KI are chosen so that the parameterized proto-Lyapunov function µ(x) becomes Lyapunov and the closed-loop system is
stable. In the analysis and controller synthesis process, a perfect matching between the reference model and true system dynamics is assumed. Also, it is
assumed that the system is not subjected to external disturbances. Since model uncertainty and the effect of disturbances are ignored in the design process,
only nominal stability is guaranteed from the theoretical perspective; performance and stability robustness are tuned and tested experimentally. Note that
the angular position and translational dynamics remain in open loop. Using quaternion theory, we explicitly show the nominal BIBO stability of the first
open-loop system. The second open-loop system is not stable and slow translational drift is expected. This slow drift is not significant during the execution
of multi-flip maneuvers because they are completed in less than 2 s.

(2), while achieving high performance in the tracking of a
physically feasible reference ωd. This objective is achieved
with the control scheme in Fig. 2, where the control signal
is generated according to the law

τ = −
[
KP +

λs

s+ λ
KI

]
eω + τ d, (7)

where τ d is the desired torque to be applied to the flyer,
and eω = ω − ωd is the control error between the
measured angular velocity, ω, and desired angular velocity,
ωd. The components of eω , expressed in B, are denoted
by {eω1

, eω2
, eω3
}. In this scheme, shown in Fig. 2, the

multiple-input–multiple-output (MIMO) controller K(s) is
determined by the constant scalar λ, and the constant diag-
onal matrices KP and KI, whose parameters are computed
using the proposed Lyapunov-based method described below.

To begin the parameterization process for analysis and
controller design, we rewrite the angular velocity dynamics
in (2) as

Jω̇ + f(ω) = τ , (8)
with

f(ω) = ω × Jω =

[
(j33 − j22)ω2ω3

(j11 − j33)ω1ω3

(j22 − j11)ω1ω2

]
=

[
f1(ω)
f2(ω)
f3(ω)

]
,

(9)
where {j11, j22, j33} are the diagonal entries of J and
{ω1, ω2, ω3} are the components of ω, expressed in B.
Similarly, the reference model used in the control scheme
of Fig. 2 can be rewritten as

Jω̇d + f(ωd) = τ d, (10)
where ωd is the time-dependent signal to be tracked in
order to perform a desired multi-flip aerobatic maneuver. For
practical and analytical reasons, ωd is chosen to be bounded,
Lipschitz continuous and complying with the system’s phys-
ical limitations. In addition, ωd is chosen so that the function

f remains differentiable along the reference trajectory ωd.
With these definitions in mind and recalling the standard
linearization technique along a feasible system trajectory, we
can write

f(ω) = f(ωd) +Af (ωd)(ω − ωd) + g(t,ω), (11)
where Af (ωd) is the 3×3 Jacobian matrix evaluated at ωd,
i.e.,

Af (ωd) =
∂f

∂ω

∣∣∣∣
ωd

=


∂f1
∂ω1

∂f1
∂ω2

∂f1
∂ω3

∂f2
∂ω1

∂f2
∂ω2

∂f2
∂ω3

∂f3
∂ω1

∂f3
∂ω2

∂f3
∂ω3


∣∣∣∣∣∣∣
ωd

, (12)

and g(t,ω) is the nonlinear residual in the linearization of
f(ω), which also satisfies

g(t,ω) = f(ω)− f(ωd)−Af (ωd)(ω − ωd). (13)
The explicit dependence of g on t reflects the fact that ωd
is a reference function that explicitly depends on time, as
discussed in [1].

Now, subtracting (10) from (8) yields
Jėω +Af (ωd)eω + g(t,ω) = τ − τ d. (14)

Concurrently, by defining v =
[
λ2

s+λKI

]
eω , we rewrite the

control law in (7) as
τ − τ d = − (KP + λKI) eω + v, (15)

which allows us to restate (14) as
ėω =− J−1 (Af (ωd) +KP + λKI) eω + J−1v

− J−1g(t,ω),
(16)

v̇ =λ2KIeω − λv. (17)
Then, noticing that g depends directly on eω only, as

g(t,ω) = g(eω) =

[
(j33 − j22)eω2eω3

(j11 − j33)eω1
eω3

(j22 − j11)eω1
eω2

]
, (18)

it follows that (16) and (17) can be written in the state-space



form
ẋ = η(t,x), (19)

where η : [0,∞)× R6 → R6 is defined as

η(t,x) =

[
−J−1 (Af (ωd) +KP + λKI) J−1

λ2KI −λI3

]
x

+

[
−J−1g(eω)

03×1

]
, (20)

with the system’s state x(t) =
[
eTω(t) vT (t)

]T
.

Thus, the problem of controller synthesis and stability
analysis becomes a standard problem of stability motion,
where it is desirable for the system’s output ω to remain
close to the reference motion trajectory ωd. The stability
of the state-space representation of the system in (19) can
be analyzed by employing Lyapunov’s direct method for
nonautonomous systems [2], [3], provided that a number of
required properties are satisfied. In particular, it can be shown
that η(t,x) is continuous as long as the desired trajectory
ωd is smooth and physically feasible. Also, it can be shown
that (19) has a unique equilibrium point at the origin and
satisfies the local Lipschitz condition required for the use of
Theorem 4.10 in [3]. The proofs of these last two claims are
presented in parts A and B of the Appendix.

To employ Lyapunov’s direct method, we first define
a proto-Lyapunov function that depends explicitly on the
controller parameters KP = diag {kP1, kP2, kP3} and KI =
diag {kI1, kI2, kI3}. Here, we choose a function with the form

µ(x) =
1

2
xT
[
J 03×3

03×3
1
λ2K

−1
I

]
x

=
1

2
eTωJeω +

1

2λ2
vTK−1

I v,

(21)

which, for a set KK = {kP1, kP2, kP3, kI1, kI2, kI3} of sta-
bilizing parameters, becomes a Lyapunov stability function
for the state-space representation in (19). Note that µ(0) = 0
and

µ(x) > 0, ∀ x 6= 0, (22)
provided that KI is chosen to be positive definite by design,
because J is always positive definite. Furthermore, it follows
directly from (21) that

min

{
1

2
λmin {J} ,

1

2λ2
λmin

{
K−1

I

}}(
|eω|22 + |v|22

)
≤ µ(x) ≤ (23)

max

{
1

2
λmax {J} ,

1

2λ2
λmax

{
K−1

I

}}(
|eω|22 + |v|22

)
,

where the operators λmin {·} and λmax {·} extract the small-
est and largest eigenvalues of a square matrix, respectively.
Also, note that

µ̇(x) = eTωJėω +
1

λ2
vTK−1

I v̇, (24)

which evaluated along the system’s trajectory, becomes
µ̇(x) =− eTω (KP + λKI) eω − eTωAf (ωd)eω

− eTωg(eω) + 2eTωv −
1

λ
vTK−1

I v.
(25)

Further analysis shows that µ̇(x) in (25) is negative definite
provided that λ, KP, KI and ωd satisfy certain conditions.
This is the key element in the method for controller synthesis
presented in this paper.

To continue, note that
eTωAf (ωd)eω = eTωÃf (ωd)eω, (26)

where Ãf (ωd) is a symmetric matrix computed as

Ãf (ωd) =
1

2

(
Af (ωd) +AT

f (ωd)
)
. (27)

Since for any signal ωd the matrix Ãf (ωd) is Hermitian,
for any time t, all its eigenvalues are real. Also, from simple
algebraic manipulations, given that the axes of B are aligned
with the principal axes of inertia of the flyer, it can be
shown that the control error eω is orthogonal to the nonlinear
residual g(eω), i.e.,

eTωg(eω) = 0. (28)
Thus, (26) and (28) allow us to simplify (25) to obtain

µ̇(x) =− eTω (KP + λKI) eω − eTωÃf (ωd)eω

+ 2eTωv −
1

λ
vTK−1

I v,
(29)

which establishes that there exist feasible sets of controller
parameters, KK , and functions ωd, Kωd , for which the
function µ̇(x) becomes negative definite. This fact can be
deduced from noticing that

− eTωAf (ωd)eω ≤ −λmin

{
Ãf (ωd)

}
|eω|22

= −d̃(t) |eω|22 ≤ −d |eω|
2
2 ,

(30)

− eTωKPeω ≤ −λmin {KP} |eω|22 = −kP |eω|22 , (31)

− eTωKIeω ≤ −λmin {KI} |eω|22 = −kI |eω|22 , (32)

− vTK−1
I v ≤ −λmin

{
K−1

I

}
|v|22 = − 1

k̃I
|v|22 , (33)

where the eigenvalue d̃ is a function of time, because ωd

is a function of time, lower-bounded by d = mint

{
d̃(t)

}
.

Since KP and KI are designed to be constant, diagonal and
positive definite, the eigenvalues kP, kI and 1/k̃I are positive
constant numbers.

Then, by directly applying (30)–(33), we can bound µ̇(x)
as

µ̇(x) ≤ − (d+ λkI + kP) |eω|22 + 2eTωv −
1

λk̃I
|v|22 , (34)

from which we can derive a recipe for controller synthesis
and a Lyapunov-based method for stability analysis. These
objectives are accomplished by defining a real number β > 0
and noticing that

− (d+ λkI + kP) |eω|22 + 2eTωv −
1

λk̃I
|v|22

= −
(
d+ λkI + kP −

1

β

)
|eω|22 −

(
1

λk̃I
− β

)
|v|22

−
∣∣∣∣ 1√
β
eω −

√
βv

∣∣∣∣2
2

,

(35)

from which it follows that the strict negativeness of µ̇(x)
(µ̇(x) < 0, ∀ x 6= 0) is enforced by satisfying

0 <
1

d+ λkI + kP
< β <

1

λk̃I
. (36)

Furthermore, if (36) is enforced, we also have that

µ̇(x) ≤ −min

{
d+ kIλ+ kP −

1

β
,

1

k̃Iλ
− β

}
|x|22 . (37)

Thus far, we have shown that for a diagonal positive
definite matrix KI, the function µ(x) is positive definite,



and that for parameters satisfying (36), the function µ̇(x) is
strictly negative along any feasible trajectory ωd. Addition-
ally, we showed that µ(x) is bounded by two simple state-
dependent quadratic expressions, and that µ̇(x) is upper-
bounded by a simple state-dependent quadratic expression.
These facts are crucial in proving the exponential stability of
the nonautonomous system described by (19). Formally, we
state the main result of this work as a series of mathematical
claims, proven using standard techniques.

Claim 1: By properly choosing a reference trajectory ωd,
the nonautonomous system ẋ = η (t,x), defined by (19) and
(20), is forced to have a unique fixed point x? = 0.

Proof: See Part A of the Appendix.
Claim 2: By properly choosing a reference trajectory ωd,

the function η(t,x) : [0,∞) × R6 → R6 is forced to be
continuous in t and locally Lipschitz in x on [0,∞) × Dx,
where Dx =

{
x : |eω|2 ≤ reω ∈ R+;v ∈ R3

}
.

Proof: See Part B of the Appendix.
Claim 3: The only fixed point of the closed-loop nonau-

tonomous system ẋ = η (t,x), x? = 0, is locally exponen-
tially stable on Dx, provided that the inequalities in (36) are
satisfied, i.e., 0 < 1/(d+λkI+kP) < β < 1/(λk̃I).

Proof: Acknowledging Claim 1, Claim 2, (23) and (37),
the proof immediately follows from the direct application of
Theorem 4.10 on Page 154 of [3].

Now, after defining

γ1 = min

{
1

2
λmin {J} ,

1

2λ2
λmin

{
K−1

I

}}
, (38)

γ2 = max

{
1

2
λmax {J} ,

1

2λ2
λmax

{
K−1

I

}}
, (39)

γ3 = min

{
d+ kIλ+ kP −

1

β
,

1

k̃Iλ
− β

}
, (40)

directly from Claim 3, we can also conclude that

µ̇ ≤ −γ3 |x|22 ≤ −
γ3

γ2
µ, (41)

from which, applying basic linear theory, it follows that

µ(t) ≤ e−
γ3
γ2

(t−t0)µ(t0), (42)
and consequently, that

|x(t)|2 ≤
√
γ2

γ1
e−

γ3
2γ2

(t−t0) |x(t0)|2 . (43)

Therefore, we can conclude that for any finite initial con-
dition x(t0), in the absence of disturbances, the control
error along the desired trajectory ωd, eω , will decay to zero
at the rate γ3/2γ2. Both γ3/2γ2 and

√
γ2/γ1 depend directly

on the controller parameters {λ,KP,KI} and ωd. Clearly,
the closed-loop system’s performance increases by making
γ3/2γ2 large and

√
γ2/γ1 small. However, the selection of

{γ1, γ2, γ3} is constrained by the stability condition in (36)
and physical limitations of the flyer’s actuators.

From an analytical perspective, (36) provides us with
a tool for analyzing the system’s stability, given prede-
fined controller parameters λ, KP and KI, and a reference
ωd. Any controller–reference combination satisfying 0 <
1/(d+λkI+kP) < 1/(λk̃I) defines an exponentially stable closed-
loop system. From a design perspective, (36) provides us
with a tool for controller synthesis. One can start by choosing
any 0 < β ∈ R+, then any quadruplet {λ,KP,KI,ωd}
with parameters satisfying (36) define a stable closed-loop

nonautonomous system represented as in (19). Theoretically,
employing this analysis, the problem of controller synthesis
can be formulated as a multi-objective optimization problem,
which is matter of current and further research. In this work,
the controller parameters are tuned experimentally and ωd
is chosen so that it defines a desired high-speed multi-flip
maneuver while satisfying the feasible region determined by
(36).

Note that the proof of Claim 3 establishes that the only
fixed point of the closed-loop nonautonomous system de-
scribed by (19), x? = 0, is locally exponentially stable
and not necessarily globally exponentially stable, because the
proof is based on Claim 2, which establishes that the function
η(t,x) is only locally Lipschitz. However, we can prove
that the equilibrium point x? = 0 is globally exponentially
stable using other arguments. From Appendix B, it follows
that η(t,x) is locally Lipschitz in x on the domain Dx ={
x : |eω|2 ≤ reω ∈ R+;v ∈ R3

}
. Then, assuming that the

initial condition |x(t0)|2 is finite, Dx is defined to satisfy
reω ≥

√
γ2/γ1 |x(t0)|2, which means that x? = 0 is

exponentially stable as long as the initial condition |x(t0)|2
is finite.

B. Attitude and Translational Dynamics

Thus far, we have shown that by choosing the right
controller parameters, the angular velocity ω will converge to
a physically feasible ωd at an exponential rate. The next chal-
lenge is to understand how the quadrotor’s attitude evolves
during the execution of a controlled multi-flip maneuver.
First, we note that the attitude state dynamics described by
(4) can be thought of as an open-loop system with input ω
and output

¯
q, as depicted in Fig. 2. Then, we show that for

signals ω and
¯
q generated according to the control structure

in Fig. 2, the error between the true body frame B and the
ideal reference flipping frame I remains bounded during a
multi-flip maneuver. This is equivalent to saying that the
attitude error remains bounded. This analytical fact is further
supported by experimental results.

In the proposed scheme shown in Fig. 2, in the absence of
sensor noise, the true measured angular velocity of the flyer
is ω. As explained before, ω is defined with respect to the
inertial frame N with its components expressed in B. Thus,
recalling that

¯
q denotes the true attitude of B, it follows that

˙
¯
q =

1

2 ¯
q∗̄p, with

¯
p =

[
0 ωT

]T
. (44)

Consistently with the control scheme in Fig. 2, the desired
angular velocity ωd is defined with respect to N with its
components expressed in B. However, the dynamics of the
desired attitude

¯
qd cannot be straightforwardly related to ωd

the way
¯
q is related to ω in (44) because due to the absence

of attitude feedback control, the space orientations of I and
B over time might differ with respect to each other. Instead,
the dynamics of

¯
qd are determined by

˙
¯
qd =

1

2 ¯
qd∗ˆ¯pd, with ˆ

¯
pd =

[
0 ω̂Td

]T
, (45)

where ω̂d has exactly the same components as ωd, but is
expressed in I rather than B.

Thus, from the previous definitions, it follows that the
attitude quaternion error between

¯
qd and

¯
q is

¯
qe =

¯
q−1

d ∗¯q, (46)



as discussed in [23]. Then, differentiating with respect to
time yields

˙
¯
qe = −

¯
q−1

d ∗ ˙
¯
qd∗¯q

−1
d ∗¯q +

¯
q−1

d ∗ ˙
¯
q, (47)

which using (44) and (45) can be rewritten as

˙
¯
qe =

1

2 ¯
qe∗(¯p− ¯

q−1∗
¯
qd∗ˆ¯pd∗¯q

−1
d ∗¯q) =

1

2 ¯
qe∗̄pe, (48)

where
¯
pe is an expression for the angular velocity error

between ω̂d and ω. This result follows from expressing ˆ
¯
pd

in B, then calculating the difference with respect to
¯
p in B.

Since the ideal reference flipping axis is invariant in both
N and I, we know that

¯
qd∗ˆ

¯
pd∗¯q

−1
d = ˆ

¯
pd. The attitude error

quaternion
¯
qe contains the information about the rotation axis

and the rotation angle between I and B. In this work, we
measure the attitude error by computing the rotation angle
corresponding to the scalar part of

¯
qe =

[
me nTe

]T
,

employing the methods and identities in [22]. Thus, after
some algebraic manipulations and recalling that

¯
q is a unit

quaternion, i.e., q2
0 + q2

1 + q2
2 + q2

3 = 1, we obtain

ṁe =
1

2
(d2q3−d3q2) (ω1 +ν1) +

1

2
(d3q1−d1q3) (ω2 +ν2)

+
1

2
(d1q2−d2q1) (ω3 +ν3) +

1

2
(d1q0−d0q1) (ω1−ν1)

+
1

2
(d2q0−d0q2) (ω2−ν2) +

1

2
(d3q0−d0q3) (ω3−ν3) ,

(49)

where
¯
qd = [ d0 d1 d2 d3 ]

T and ˆ
¯
pd =

[ 0 ν1 ν2 ν3 ]
T . Also, as explained in [1], the

ideal reference flipping axis is described by a unit vector
af = [ a1 a2 a3 ]

T expressed in I. Thus, for an ideal
reference angle Ψ, ω̂d = Ψ̇af, it follows that d0

d1

d2

d3

 =


cos Ψ

2

a1 sin Ψ
2

a2 sin Ψ
2

a3 sin Ψ
2

 ,
[
ν1

ν2

ν3

]
=

 a1Ψ̇

a2Ψ̇

a3Ψ̇

 . (50)

Then, noticing that d3ν2 − d2ν3 = d1ν3 − d3ν1 = d2ν1 −
d1ν2 = 0, we can write

ṁe =
1

2
(d2q3 − d3q2 + d1q0 − d0q1)(ω1 − ν1)

+
1

2
(d3q1 − d1q3 + d2q0 − d0q2)(ω2 − ν2)

+
1

2
(d1q2 − d2q1 + d3q0 − d0q3)(ω3 − ν3).

(51)

Now, recalling from the previous section that the components
of ω, {ω1, ω2, ω3}, will entry-wise converge to {ν1, ν2, ν3}
at an exponential rate, we can conclude that ṁe will converge
to zero and me will approach a constant value. Furthermore,
since the angle that measures the attitude error is given
by Θ = 2 arccosme, we can also conclude that the error
between B and I will remain bounded during a high-speed
multi-flip maneuver. In fact, it can be shown that

Θ(t) ≤ 2γ2
√
γ2

γ3
√
γ1

(
1− e−

γ3
2γ2

(t−t0)
)
|eω(t0)|2 + Θ(t0).

(52)
This analytical result is consistent with the experimental
results discussed in the next section of this paper.

During a multi-flip maneuver, in the absence of powerful
disturbances, the translational motion of the quadrotor un-
dergoes an ascent–descent process in which gravity is the

only significant non-actuated exerted force on the system.
Since the execution of a multi-flip maneuver normally takes
less than 2 s, the drift of the quadrotor on the inertial n1-n2

plane is small relative to the size of the flyer. This statement
is consistent with the experimental results discussed in the
next section of the paper. However, note that the open-loop
translational dynamics are unstable.

IV. SIMULATIONS AND EXPERIMENTAL RESULTS

In this section, we present simulations and experimental
results that validate the proposed Lyapunov-based method
for controller synthesis and analysis. The flyer’s parameters
and physical variables involved in numerical computation
and control implementation are expressed in the meter-
kilogram-second (MKS) system of units. As examples, we
consider three high-speed reference trajectories ωd, corre-
sponding to single-, double- and triple-flip maneuvers about
the body axis b1, where the associated eigenvalues d are
−4.5326 × 10−5 N·m·s/rad, −5.1801 × 10−5 N·m·s/rad and
−5.8277 × 10−5 N·m·s/rad, respectively. In all the cases,
KP = kPI3, KI = kII3, and the controller parameters
are chosen to be λ = 30 rad/s, kP = 2 × 10−3 N·m·s/rad

and kI = 6 × 10−5 N·m·s2/rad. Also, it can be verified that
β = 555.5536 rad/N·m·s satisfies the inequalities in (36),
and therefore, the only equilibrium point x? = 0 of the
closed-loop system defined by (19) and (20) is ensured to
be nominally exponentially stable, provided that the initial
condition |x(t0)|2 is finite.

Simulation results of the three considered cases are shown
in Figs. 3-(a), 3-(b) and 3-(c). The reference flipping speed,
|ωd(t)|2, is shown in green, the simulated controlled flipping
speed, ω1(t), is shown in blue and the simulated flipping
angle about b1 (roll) is shown in red. The almost-perfect
matching between the green and blue curves demonstrates
the achievement of both high performance and stability
under nominal conditions. Experimental results of the three
considered cases are shown in Figs. 3-(d), 3-(e) and 3-(f).
The reference flipping speed, |ωd(t)|2, is shown in green,
the measured controlled flipping speed, ω1(t), is shown in
blue and the measured flipping angle about b1 (roll) is
shown in red. These results demonstrate that the proposed
control scheme enables the robust execution of real-time
high-speed multi-flip maneuvers, from both the stability and
performance perspectives, even in the presence of plant
uncertainty and disturbances. Here, plant uncertainty comes
mostly from unmodeled aerodynamic effects and variability
of the actuator parameters. Disturbances come from the
changing atmospheric conditions surrounding the flyer.

In the course of this research, the proposed control scheme
has been tested through several dozens of real-time flight
experiments. Six of these flight experiments are shown in
Fig. 4. Here, Figs. 4-(a), 4-(b) and 4-(c) show composite
images of single-, double- and triple-flip maneuvers about
the b1 axis, respectively. Similarly, Figs. 4-(d), 4-(e) and 4-
(f) show composite images of single-, double- and triple-
flip maneuvers about a 45◦-oblique axis, b′1 = (b1+b2)/

√
2,

respectively. Complete videos of these six experiments can
be found in [24].

V. CONCLUSIONS

We proposed a Lyapunov-based method for synthesizing
and analyzing controllers capable of automatically flying a



(a) Simulated Single Flip (b1). (d) Experimental Single Flip (b1).

(b) Simulated Double Flip (b1). (e) Experimental Double Flip (b1).

(c) Simulated Triple Flip (b1). (f) Experimental Triple Flip (b1).

Fig. 3: Simulations and experimental results. Plots (a), (b) & (c) show
simulations of single-, double- and triple-flip high-speed maneuvers about
the body-fixed axis b1. The simulations start at t0 = 0.5 s. Plots (d), (e)
& (f) show real-time experiments of single-, double- and triple-flip high-
speed maneuvers about the body-fixed axis b1. The experiments start at
t0 = 0.5 s.

19-gram quadrotor during high-speed multi-flip maneuvers.
The method for controller design is based on the use of
an angular velocity feedback structure and a parameterized
proto-Lyapunov function associated with the closed-loop
system. We showed analytically that, in the absence of plant
uncertainty and disturbances, the flyer’s angular velocity
converges to a multi-flip reference signal, provided that this
reference is physically feasible and smooth. In this case, from
the feasible set of controller parameters, we experimentally
selected gains that made the system robust from both the
stability and performance perspectives. In addition, using
quaternion representation, we showed that during a high-
speed multi-flip maneuver, the proposed controller causes
the attitude error to remain bounded. Simulation and experi-
mental flight results clearly demonstrate the suitability of the
proposed approach.
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APPENDIX

A. The Only Fixed Point of the Closed-Loop System is 0

In the proposed control structure of Fig. 2, the closed-
loop system defined by (19) is forced to have a unique fixed
point at x? = 0, where x? =

[
e?Tω v?T

]T
, by properly

choosing a reference trajectory ωd. To begin the argument,
notice that for a fixed point x? it follows that η(t,x?) = 0
for all t ≥ 0, which implies that

0 = − (KP + λKI +Af (ωd)) e?ω + v? − g(e?ω), (53)
0 = −λv? + λ2KIe

?
ω. (54)

Then, by combining both equations above we obtain
(KP +Af (ωd)) e?ω + g(e?ω) = 0. (55)

Clearly, if e?ω = 0, then from (54) it follows that v? = 0
and x? = 0. By definition of fixed point, e?ω is constant, so
follows that g(e?ω) is also constant.

Now, we show that there exists a set of physically feasible
reference trajectories ωd for which x? = 0 is the unique fixed
point of the closed-loop system defined by (19) and (20).
Specifically, the previous statement is true for all references
of the form

ωd = $a, (56)
where $ is a nonnegative bell-shaped function, as defined in
[1], and a is a unit vector that describes the corresponding
flipping axis, expressed in the body frame B. Formally, for a
reference defined as in (56), the relationship (55) is satisfied
if and only if e?ω = 0. The proof of necessity (⇐ direction)
immediately follows from noticing that if e?ω = 0, then
g(e?ω) = 0. The proof of sufficiency (⇒ direction) can
be established employing the contradiction technique and
noticing that, for all ωd of the form given in (56), (55) cannot
be satisfied by a nonzero constant e?ω for all time t ≥ 0.
A time-varying e?ω contradicts the definition of fixed point,
which completes the argument.

Note that an ωd can easily be constructed so that (55) is
satisfied by multiple nonzero constant values of e?ω for all

t ≥ 0. Also note that it is not trivial to determine the set
of all the references ωd that force the closed-loop system to
have a unique fixed point at 0.

B. The Function η(t,x) is Continuous and Locally Lipschitz
Here, we show that by properly choosing the reference ωd,

η(t,x) is ensured to be continuous and locally Lipschitz. To
begin, we rewrite the nonautonomous system as

ẋ = η(t,x) = F (t)x+ ζ(x), (57)
where

F (t) =

[
−J−1 (Af (ωd) +KP +KIλ) J−1

λ2KI −λI3

]
, (58)

ζ(x) =

[
−J−1g(eω)

03×1

]
. (59)

In F (t), Af (ωd) is a function of ωd, which depends on
a nonnegative bell-shaped function $, as defined in (56).
Since $ is a polynomial function of t without discontinu-
ities or singularities, it immediately follows that η(t,x) is
continuous in t ≥ 0.

Now, we show that η(t,x) is locally Lipschitz in x. We
begin by considering two feasible states x and y to obtain
|η(t,x)− η(t,y)|2 ≤ ‖F (t)‖2 |x− y|2 + |ζ(x)− ζ(y)|2 ,

(60)
where the induced 2-norm ‖F (t)‖2 can be chosen to re-
main bounded by a proper selection of the reference ωd(t).
The remaining step is to find a Lipschitz constant for
|ζ(x)− ζ(y)|2. To accomplish this objective, we first obtain
the 6× 6 Jacobian matrix

∂ζ

∂x
=


0 −α32

j11
eω3

−α32

j11
eω2

−α13

j22
eω3

0 −α13

j22
eω1

03×3

−α21

j33
eω2 −α21

j33
eω1 0

03×3 03×3


, (61)

where α32 = j33 − j22, α13 = j11 − j33 and α21 =
j22 − j11. Then, considering that on the domain Dx ={
x : |eω|2 ≤ reω ∈ R+;v ∈ R3

}
, both ζ(x) and ∂ζ/∂x are

forced to be continuous in t, we use Lemmas 3.1 and 3.2
from [3]. To continue, note that the induced ∞-norm of the
matrix ∂ζ/∂x is bounded on Dx according to the inequality∥∥∥∥ ∂ζ∂x

∥∥∥∥
∞
≤
√

3 max

{∣∣∣∣α32

j11

∣∣∣∣ , ∣∣∣∣α13

j22

∣∣∣∣ , ∣∣∣∣α21

j33

∣∣∣∣} reω= Lζ . (62)

Thus, it follows that∥∥∥∥ ∂ζ∂x
∥∥∥∥

2

≤
√

3

∥∥∥∥ ∂ζ∂x
∥∥∥∥
∞
≤
√

3Lζ , (63)

which implies that ζ(x) is locally Lipschitz on Dx and that√
3Lζ is a Lipschitz constant for ζ(x). Consequently, it also

follows that
|η(t,x)− η(t,y)|2 ≤ Lη |x− y|2 , (64)

where Lη = maxt≥t0 ‖F (t)‖2 +
√

3Lζ . We can thus con-
clude that η(t,x) is locally Lipschitz on Dx and that Lη is
a Lipschitz constant for η(t,x).
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