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Abstract— We present a study of the dynamics of passive
wing-pitching in flapping-wing hovering flight, employing an
integrated simulation approach. Here, the motion of a perfectly
rigid wing is described using the Euler-Lagrange equation in
Kane’s formulation, in which the passive rotating mechanism
(flexure hinge) is modeled as a single-axis elastic beam and
the total aerodynamic moment is computed by numerically
solving the three-dimensional Navier-Stokes equations for the
low Reynolds number case using an overset grid method. The
proposed approach leads to the formulation of a fluid-structure
interaction (FSI) problem, which is solved using an alternating
time-marching procedure. The presented integrated simulation
approach is validated using experimental data available in the
technical literature and the effect of different wing-planform
shapes on the resulting aerodynamic efficiency is discussed.

I. INTRODUCTION

The development of micro-mechanisms based on the no-
tion of passive wing-pitching made possible the design and
fabrication of insect-scale flapping-wing aerial microrobots.
For example, in [1], the robot’s wings are flapped actively,
but the pitching motion is generated passively by allowing
the wings to rotate about flexure hinges. As the wings’
instantaneous angles of attack are mainly determined by the
pitching angles, the wings’ rotational motions directly affect
the aerodynamic efficiency of the entire aerial robot. In the
passive pitching case, the pitching rotation of a flapping
wing is not prescribed and it results from the influence of
inertial forces acting on the wing and the interaction of the
airfoil with the surrounding air, as the wing is flapped and
the flexure hinge flexes, defining a fluid-structure interaction
problem. Passive pitching mechanisms have been studied ex-
perimentally and using quasi-steady blade element analyses
[2]. However, in order to systematically study novel aero-
dynamic designs and robust control methods, passive wing-
pitching mechanisms need to be investigated employing more
sophisticated descriptions of the fluid-structure interaction
phenomena that emerge in this case.

Considering that numerical Navier-Stokes solvers are
widely used in research relating to the aerodynamics and
flight mechanics of wings with fully prescribed flapping and
pitching motions [3], we propose a simulation scheme that
combines the solution of the wing’s equations of motion with
the outputs from the three-dimensional (3-D) aerodynamic
solver employed to compute numerical solutions to the
Navier-Stokes equations. This approach leads to the formu-
lation of an integrated computational simulation framework,
which can be extended to the study of the dynamics of an
entire microrobot composed of flexure-hinge mechanisms.

II. DYNAMICAL MODELING
We consider the dynamics of generic insect-scale flapping-
wing microrobots of the kind depicted in Fig. 1, assuming the
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Fig. 1.Robotic flapping-wing system. (a) Illustration of the generic flapping-
wing microrobot considered in this research. (b) Geometric model of the
flexure hinge mechanism. (c) Definition of the coordinate systems. The
inertial frame g is defined by the fixed origin Og and space-fixed unit
vectors X, Y, Z. The body frame Fy, is defined by the origin Oy and
instantaneous wing-fixed unit vectors X, y, z. The Euler angles ¢, 6,
denote the flapping, pitching and rolling rotations of the wing, respectively.
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Fig. 2. Overset grid and data-flow diagram. (a) Example of overset grid
assembly for a rotating wing. (b) Diagram of the integrated simulation
procedure. Here, t, is discrete time, M, is the integrated aerodynamic
moment on the wing surface, and ¢ ~! is the unit delay operator.

same basic aerodynamic and robotic designs to those of the
prototypes in [1]. Typically, a robot of the kind considered
here is composed of an airframe, a pair of power actuators, a
pair of mechanical transmissions and a pair of flexure hinges
that connect the wings through the transmissions to the power
actuators. The microrobotic mechanisms employed in the
construction of microrobots propelled by passively-pitching
flapping wings are composed of rigid bars connected by
rectangular flexure hinges, which can be modeled as single-
axis elastic beams with stiffness ky, [2], as shown in Fig. 1-
(b). Employing this simplified hinge model and assuming a
perfectly rigid thin airfoil, the motion of a passively-pitching
flapping wing can be described, using the Euler-Lagrange
method in Kane’s formulation, as
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where L is the Lagrangian of the system, ¢ is a generalized
coordinate, F, and M, are, respectively, the non-conservative
total force and total moment acting on the wing’s center of
mass, v, is the translational velocity of the wing’s center
of mass and w is the wing’s angular velocity. In this case,
assuming a perfectly horizontal stroke plane (1) = 0, ) =0),
it follows that w = ¢Z+ 03, where 6 is the only generalized
coordinate of the system and {¢, qb} are fully prescribed,
as flapping motions are actively generated, as shown in
Fig. 1-(c). Thus, the equation of motion associated with the
generalized coordinate # completely describes the dynamical
behavior of the system according to

Jy0 = Myey — k) — Jy.pcosd + %qus? sin20, (2)
where J, and J,, are the wing’s moment of inertia compo-
nents in the body frame Fy, M, , is the component of the
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Fig. 3. Passive-pitching simulation results. Comparison between the sim-

ulated wing-pitching angle, #-Sim, and the experimentally measured wing-
pitching angle in [2], -Exp. The wings in the simulation and experiment
are driven according to the same prescribed flapping signal ¢ (gray dashed
line). A simplified illustration of the experiment in [2] is shown between
markers A and B.

aerodynamic moment M,. along the axis ¥y, as defined in
Fig. 1-(c), and Ky, is the spring constant of the hinge.

ITII. SIMULATION AND VALIDATION

The continuum air flows around the wings of the aerial
microrobots considered here, which operate at low Reynolds
numbers, are 3-D, unsteady and describable by the 3-D
incompressible Navier-Stokes equations, as
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where u is the flow velocity field, p is the air pressure field,
p is the air density and v is the air kinematic viscosity.
In the simulations presented in this abstract, (3) is solved
numerically, using a finite-volume-based implicit unsteady
segregated solver, available with the STAR-CCM+ package.
As illustrated in Fig. 1, since a robot’s wing moves during
the simulation process, the overset grid method shown in
Fig. 2-(a) is used to update the instantaneous global mesh
for the 3-D aerodynamic solver in a way such that all the
local mesh domains are assembled together dynamically.

As shown in the scheme of Fig. 2-(b), the Navier-Stokes
equations are solved in a discretized space, the spatial
distributions of pressure and velocity are computed, and the
aerodynamic moment, M,., is obtained by integrating the
pressure and sheer-stress contributions over the boundary
surface of the wing. The dynamics of the wing, i.e., (1),
are solved using an alternating time marching procedure in
which the solution to the rigid-body dynamics of the wing
at time ¢,, is updated using the total aerodynamic moment at
tn—1. Then, the updated rigid-body wing dynamics informa-
tion is employed to find the boundary conditions required to
solve the Navier-Stokes equations at time ¢,,. The numerical
solvers employed to solve the equation of motion (1) and
the Navier-Stokes equations (3) are combined to generate
the simulation scheme in Fig. 2-(b).

In the course of the research discussed here, the pro-
posed integrated simulation approach has been validated by
comparing the computed pitching angles with the experi-
mental data published in [2]. In the implementation of the
simulations we use the experimental flapping signal ¢ in
Fig. 3 (taken from [2]), obtained experimentally, in open
loop, by exciting the microrobotic mechanism’s actuator
with a sinusoidal function. Notice that since ¢ in Fig. 3
is generated experimentally and in open loop, this signal
is not perfectly sinusoidal. As can be seen in Fig. 3, the
simulated pitching angle signal, #-Sim, matches reasonably
well the experimental signal, #-Exp, with the exception of
the signal peaks (marked with A and B), which provides
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Fig. 4. Comparison of passive-pitching simulation results obtained with the
models of a rigid honeybee-like wing and a rigid Eristalis tenax-like wing
for a stiffness k, = 3 umN - rad—!. (a) Simulated pitching-angle signals
comparing the honeybee-like wing and Eristalis tenax-like wing cases. (b)
Simulated instantaneous total vertical aerodynamic forces corresponding to

the honeybee-like-wing and Eristalis tenax-like wing cases.

evidence supporting the effectiveness of the proposed inte-
grated simulation approach. The observed discrepancies at
the peaks A and B in Fig. 3 suggest that the assumptions
of a perfectly rigid wing and a spring-like hinge might not
be completely correct. This issue is a matter of current and
further research.

IV. APPLICATIONS

The proposed integrated simulation approach, illustrated
by the data-flow diagram in Fig. 2-(b), can be employed
to investigate a number of research topics relevant to the
understanding of flapping-wing microrobots. For example,
the instantaneous location of the center of pressure, energy
consumption, the effects of the flexure hinge stiffness on the
dynamical behavior of the system and the influence of the
wing planform shape on the robot’s performance.

The simulation results for two different wing planform
shapes are shown in Fig. 4. The first planform shape cor-
responds to a honeybee-like wing and the second planform
shape corresponds to a Eristalis tenax-like wing. For com-
parison purposes, in the implementation of the simulations,
the planform shapes of the two wings are re-shaped so that
both simulated wings have very similar spanwise lengths
and surface areas. Also, both wings are designed so that
they define identical moments of inertia with respect to
their principal axes. The main difference between the two
simulated wings is that the honeybee-like wing has a sharper
trailing edge than that of the Eristalis tenax-like wing.
From the comparison in Fig. 4, it can be observed that the
signals corresponding to the honeybee-like wing display a
significant phase shift and that the Eristalis tenax-like wing
produces larger instantaneous and average vertical forces,
which suggests that the planform shape can significantly
affect the aerodynamic efficiency of micro-flyers propelled
by passively-pitching flapping wings.
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