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Abstract— This paper deals with the implementation of
adaptive tuning and control on a computer hard disk drive
(HDD). A model-based adaptive loop is added to a LTI
stabilizing controller to minimize the position control error of
the HDD head. This adaptive loop may be used in either of two
modes: control tuning (CT) or real-time fully adaptive control
(RTFAC). The former (CT) consists of adapting a FIR filter
to compensate for unknown disturbance dynamics using the
inverse QR-RLS algorithm. Once the filter has converged it is
wrapped into the LTI controller and a new tuning process is
performed, iteratively improving the control performance. The
second method (RTFAC) consists of adapting indefinitely a FIR
filter to compensate for unknown disturbances. This method is
implemented using an unwindowed lattice RLS filter, which
makes the scheme converge substantially faster than when
using other adaptive algorithms. This pertains to the HDD data
seek time. Another innovation in this paper is the introduction
of a frequency-weighting filter in the RTFAC scheme, which
accounts for robust stability. Experimental results are presented
for both adaptive tuning and control methods, programmed on
a commercial hard disk drive.

I. INTRODUCTION

The control of hard disk drives involves track-seeking and

track-following. The former deals with the motion control

of the head between tracks, the latter with maintaining the

head on the center of the track. In this paper we focus on

track-following.

It has been reported that track-following can be thought

of as an output disturbance rejection problem [1], [2]. There

exist two main sources of disturbances in the hard disk drive

dynamics. The first is repeatable runout (RRO), which is

produced by imperfections and eccentricities on the tracks.

The second is nonrepeatable runout (NRRO), produced by

the aggregated effects of disk drive vibrations, electrical

noise in the circuits and the measurement channels.

Model-based noise rejection adaptive schemes are well

suited to deal with the problems previously described here.

There exist a series of slightly different adaptive structures.

The two most prominent are the adaptive inverse control

(AIC) [3] and adaptive-Q (A-Q) [4] schemes. Despite the

different denominations, they are essentially the same.

The implementation of an add-on adaptive controller for

disk drives, based on the AIC scheme is described in [2].

There, the adaptive algorithm employs the classical RLS

recursions in [5]. The experimental implementation of an A-

Q scheme is demonstrated in [1]. There, the disk drive open-

loop plant is stabilized using a linear time-invariant (LTI)
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LQG compensator and then an adaptive filter Q is added

using the typical configuration in [4]. The adaptation is done

using low order LMS and RLS algorithms and implemented

in real time using a TMS320C67 floating point digital signal

processor (DSP).

In this paper, we adopt the frequency weighting adaptive

structure introduced in [6], using two versions of the RLS al-

gorithm. The first is the inverse QR-RLS algorithm described

in [7]. This algorithm belongs to the family of array methods,

that possess better numerical properties than the classical

RLS recursions in [5]. The second algorithm employed is

the lattice filter in [8], which converges significantly faster

than any other RLS method employed on this experiment.

The experimental implementation of the control system

was done using a Mathworksr xPC Target system over the

same commercial hard drive employed in the experiments

reported in [1]. This paper reports a significant improvement

in the control performance, which is attributable to the use of

better algorithms for system identification and control, and

higher order filters, made possible by using the significatively

faster xPC Target system for signal processing.

The paper is organized as follows. Section II describes

the experimental setup and explains some relevant practical

issues relating to the real time implementation of the con-

troller. Section III describes the system identification of the

hard disk drive dynamics required for control system design.

Section IV explains the design of the control system, which

consists of a LTI feedback control loop augmented by an

adaptive control loop. Experimental results are presented in

Section V, and finally, some conclusions are drawn in Section

VI.

II. DESCRIPTION OF THE EXPERIMENT

A hard disk drive (HDD) is a mechatronic device that uses

rotating platters to store data. Information is recorded on,

and read from concentric cylinders or tracks by read-write

magnetic transducers called heads, that fly over the magnetic

surfaces of the HDD platters. The position of the heads over

the platters is changed by an actuator that consists of a coil

attached to a link, which pivots about a ball bearing. This

actuator connects to the head by a steel leaf called suspension

[9], [10]. This description of the HDD is shown in Fig. 1.

The control objective is to position the center of the head

over the center of a data track. Thus, the typical measure

of HDD tracking performance is the deviation of the center

of the head from the center of a given track, which is often

called track misregistration (TMR) [10]. There exist many

indices to quantify TMR. Here we adopt

T MR = 3σ . (1)
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Where σ is the empirical standard deviation (STD) of the

control error signal. It is common to express 3σ as a

percentage of the track pitch [1], [10], which must be less

than 10% in order to be considered acceptable. TMR values

larger than this figure will produce excessive errors during

the reading and recording processes.

In this experiment we use a 2-platter (10 GB/platter), 4-

head, 7200 rpm, commercial HDD, and a Mathworksr xPC

Target system for control. The sample-hold rate of 9.36 KHz,

used for communication, control and filtering, is internally

determined by the HDD and transmitted trough a clock signal

to the target PC used for control. Both systems must operate

in a synchronized manner, as shown in the diagram of the

experiment (Fig. 2).

The position of a given HDD head is digitally transmitted

by the use of two signals. The first conveys the track number

(TN) over where the head is positioned. The second is the

so called position error signal (PES), which conveys the

position of the head on the track pitch. Thus, the measured

position y is function of both the TN and PES signals.

The loop is closed when the digital controller outputs

the sequence x which is converted into an analog signal

to command the HDD actuator. At this stage, we pose the

control problem in the discrete-time domain, defining the

mapping from x to y as our open-loop plant P.

Any controller designed for this system should robustly

stabilize the slightly damped system dynamics of the HDD

and reject the disturbances to which the system is subjected.

Typical sources of disturbances are: disk vibrations, actuator

arm vibrations, air turbulence (windage) and external shocks.

9360 Hz


Tracks or Cylinders


Sector


Head


Suspension


Actuator


Fig. 1. Schematic idealization of the hard disk drive (HDD) system.

III. SYSTEM IDENTIFICATION

A. Identification of the Open-Loop Plant

The first step, in order to design a controller, is to find a

LTI model for the open-loop plant P of the HDD. This model,

y = f (T N,PES)¾Digital

Controller

?

D/A

-

Digital

Reader

Digital

Reader

¾
¾

HDD

-

-

- Clock
Reader

x

y

DSP (xPC Target System)

clock
T N

PES

Fig. 2. Diagram of Experiment.

denoted by P̂, is obtained by system identification (SID).

Since the system is slightly damped, the SID of P must be

performed under feedback control. In general, there exist two

methods for performing SID in closed-loop [11]. The first

method is called direct, because P is directly estimated using

signals x and y in Fig. 3. The second one is called indirect,

because it first finds an estimate M̂ of the closed-loop plant

M using signals r and y in Fig. 3, and then computes

P̂ =
M̂

K(1− M̂)
. (2)

In this case, the indirect method is preferable, because r

can be chosen to be independent of disturbances wo and wi.

On the contrary, x always depends on wo and wi.

P(z)-- - hh -?
K(z)-h-

6

?r yx

wowi

M(z)

−

Fig. 3. Block diagram of PD feedback control system used for identifi-
cation. P(z) = open-loop plant; K(z) = classical PD feedback controller;
y = Mr; y = position of the head; r = excitation for SID; wo = output
disturbance; wi = input disturbance.

At this stage, a plant model is not available, therefore, K

is chosen to be a PD controller that is tuned on-line. Thus,

after selecting suitable gains for K, a 20th order closed-loop

plant model M̂ is computed using the n4sid algorithm [12]

from 30,000 input-output data points. This yields an open-

loop plant model which is reduced to a 2nd order model after

performing a balanced truncation. The resulting P̂ is shown

in blue in Fig. 4.

B. Identification of the Closed-Loop Plant

Section IV will describe the model-based design of the

LTI controller C that will be used from this point onwards.
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Fig. 4. In blue: Bode plot of the identified open-loop plant model P̂(z).
In green: Bode plot of the identified closed-loop plant model Ĝ(z)

This controller is connected to P as shown in Fig. 5, defining

the closed-loop plant G. Analogously to the open-loop case,

the identified transfer function of the closed-loop plant will

be denoted by Ĝ. This function Ĝ is estimated from 30,000

data points using the n4sid algorithm and truncated to a 4th

order model using standard balanced truncation techniques.

The resulting Ĝ is shown in green in Fig. 4.
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-

C(z)
6
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h h¾
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ỹ

wowi G(z)

−−

Fig. 5. Block diagram of LTI feedback control system. P(z) = open-loop
plant; C(z) = classical LTI feedback controller; y = Gu; y = position of
the head; u = adaptive filter output; wo = output disturbance; wi = input
disturbance; yre f = position reference; ỹ = position error.

IV. CONTROL DESIGN

The control system proposed in this paper consists of two

feedback loops. First, the LTI controller C robustly stabilizes

the slightly damped open-loop dynamics and rejects low-

frequency components of the disturbance w0 in Fig. 5. Then,

an adaptive control loop is added, as shown in Fig. 6, to

augment the LTI controller and produce a more significant

disturbance-rejection effect over the signal w, which repre-

sents the combined influences of wo and wi.

The adaptive loop may be used in either of two modes:

control tuning (CT) or real-time fully adaptive control (RT-

FAC). CT denotes the process of adaptively finding optimal

gains for rejecting the disturbance w in Fig. 6 until the

system reaches steady state performance. Then, the adaptive

filter is turned off and these gains are considered to be

indefinitely optimal. This method is appropriate when w is

statistically stationary, and has the advantage of allowing fast

tracking once the adaptive gains have converged. This idea

is implemented using the inverse QR-RLS algorithm [7].

On the other hand, RTFAC denotes an indefinite process of

adaptively finding optimal gains for rejecting the disturbance

w in Fig. 6. Implementing RTFAC is considerably more chal-

lenging than CT, because it requires not only an algorithm

able to find the optimal gains, but also to converge fast in

order to perform tracking. This requirement is satisfied using

the lattice algorithm in [8], which is also computationally

very efficient.
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Fig. 6. Block diagram of the adaptive control system.

A. LTI Feedback Loop

The LTI feedback controller structure is shown in Fig.

5. This controller was designed using discrete-time domain

classical techniques. It consists of a digital integrator and a

digital notch filter. The integrator gain and notch parameters

were tuned to maximize the output-disturbance rejection

bandwidth. The input u in Fig. 5 will become the adaptive

control command, and the output y is the position signal. The

signal wo represents the effect of all output disturbances, and

similarly, wi represents the effect of all input disturbances.

The signal yre f is constant and corresponds to the desired

position of the HDD head.

Fig. 7 shows, in blue, an estimate of the output sensitivity

transfer function, computed as Ŝo = (1+ P̂C)−1. Notice that

in this case the input sensitivity function, Si coincides with

G, therefore, a good estimate of Si is the identified function

Ĝ. Fig. 7 shows, in green, the computed transfer function
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N̂ = P̂C(1 + P̂C)−1 which is the mapping from yre f to y.

Notice that N̂yre f = yre f when yre f is constant.
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Fig. 7. Bode plots of the computed output disturbance and reference
sensitivity transfer functions Ŝo(z) = (1 + P̂(z)C(z))−1 (blue) and N̂ =
P̂(z)C(z)(1+ P̂(z)C(z))−1 (green).

B. Adaptive Loop

The adaptive control algorithm presented in this paper

assumes known LTI plant dynamics but unknown disturbance

dynamics. The adaptive controller requires an estimate Ĝ

of the closed-loop transfer function G in Fig. 6. The signal

w, represents the aggregated effects of wo and wi over the

system. It is clear, after some algebraic manipulations, that

w =
P

(1+PC)
wi +

1

(1+PC)
wo. (3)

The control objective is to minimize the RMS value of the

position error ỹ = y−yre f . In order to achieve this objective,

we pose the control problem as a least squares problem,

solvable recursively by the use of any of the versions of the

RLS algorithm.

To begin with, let τ be an integer and x be a generic

sequence in ℓ2. Then define

xτ =

{

xτ(k) = x(k) 0 ≤ k ≤ τ

xτ(k) = 0 otherwise
. (4)

Thus, the control objective becomes finding an operator F

that solves

min
F

‖Hỹτ‖ℓ2
, (5)

where τ must be interpreted as the value of the digital counter

at present time.

The filter H provides frequency weighting in the adaptive

controller, which allows us to give different relative impor-

tance to different bands of the frequency spectrum. In many

cases it is convenient to use weighting filters, for example,

the results in [6] provide empirical evidence that the use of

a high pass filter H reduces the H∞ norm of the steady-state

filter F , increasing the stability robustness of the adaptive

scheme.

Now, choosing F to be a FIR filter, noticing that yre f =
Nyre f when yre f is constant, assuming perfect matching

between G and Ĝ, and taking into consideration that SISO

systems commute, (5) is equivalent to

min
F

‖Hŵτ +FĜHŵτ‖ℓ2
s. t. F(z) = z−1

L

∑
i=0

aiz
−i. (6)

Once the problem has been posed in the form of (6), by

simple algebraic manipulations it can be transformed into a

typical RLS problem. Here, we conduct experiments using

two versions of the RLS algorithm: The inverse QR-RLS

algorithm in [7], and the lattice filter in [8].

C. Stability of the Adaptive Scheme

The adaptive scheme in Fig. 6 can be put into the typical

feedback configuration shown in Fig. 8, where ∆ = G− Ĝ,

F is the filter adaptively computed according to the laws

described in the previous subsection, and r = F(N −1)yre f .

The configuration in Fig. 8 is well posed according to

∆(z)

F(z)

h

h

-

¾ ?

6
-

¾

r

w

Fig. 8. Typical feedback connection.

the definition in [13], the open-loop dynamics is robustly

stabilized by a LTI controller, therefore, ∆ is ℓ2-stable, and

F is always stable because of having a FIR form. Thus, it

follows immediately by the use of the small gain theorem

that a sufficient condition for stability of the adaptive scheme

in Fig. 6 is given by

‖∆‖∞‖F‖ℓ2→ℓ2
< 1. (7)

It is worth noticing that for the special case when Ĝ = G,

the configuration in Fig. 8 is stable for any stable F . The

relation in (7) is not applicable directly, however, it gives

powerful insights and guidelines about the way the weighting

filter H should be chosen. It is clear that (7) does not

ignore the underlying nonlinear dynamics used to generate

the parameters of F , simply states that a desirable adaptive

algorithm should produce filters with small enough induced

norms.

V. EXPERIMENTAL RESULTS

In the experiments described here, the sample-and-hold

rate for control and filtering was 9.36 KHz, externally

determined by the HDD clock as shown in Fig. 2. First, we

discuss the experiments performed on control tuning (CT).

These consist of adaptively finding gains for the filter F

in Fig. 6 employing the inverse QR-RLS algorithm. Once

convergence has been achieved these gains are fixed and

consequently the whole scheme becomes LTI, in other words,

we tune F . The filter F is tuned in a given location of the

HDD using the corresponding closed-loop model Ĝ at that
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location. A location is defined by a head and by a cylinder,

which in this case is head 0 – cylinder 10,000.

The CT method was implemented with filters of orders 6,

12, 24 and 36. Fig. 11 shows time series, power spectral

densities (PSDs) and the histogram for the case L = 24.

Also, the achieved performances are shown in Table I. The

first thing to notice is that CT significatively improves the

performance achieved by the classical LTI controller alone.

The second one is that there is not a significant improvement

related to higher orders on the head 0. On the contrary,

higher order feedforward filters make a clear improvement

on head 2. This suggests that higher older filters compensate

for inaccuracies on the identified model Ĝ. Considering this

evidence, a 2-stage CT scheme is proposed. The idea is to

adaptively look for a new feedforward filter F2, replacing Ĝ

by Ĝ2 in the scheme shown in Fig. 6. This new F2 will

be specialized to some areas of the HDD. In this case,

to every head. The transfer function Ĝ2 is the identified

model of G2 defined by the block diagram in Fig. 9, with

U = F(1+FĜ)−1.

The performances, quantified by the 3σ index, achieved

by the 2-stage CT method, at different locations of the HDD

are shown in Table I. It is important to remark that this

method produces an improvement with respect to the simple

CT method in every position where it was tested.

G(z)

U(z)

h

-

-

-

6 ¾

u y

G2(z)

Fig. 9. Transfer function G2.

Now we discuss the experiments performed on RTFAC. In

order to implement a fully adaptive controller on the HDD

it is crucial that the employed adaptive algorithm achieves

both fast adaptation and empirical minimum variance steady

state performance. These two requirements are satisfied by

the unwindowed lattice RLS filter in [8]. Empirical evidence

of this fact is shown in Fig. 10, where we compare the

convergence speeds of the inverse QR-RLS and the lattice

RLS algorithms.

Depending on the problem, fast adaptation may produce

prediction filters with large ℓ2-induced (H∞ in steady state)

norms. This is undesirable, because as stated in Section IV,

stability is ensured when (7) is satisfied. In other words, a

filter F with a large ℓ2-induced norm makes the stability

of the whole adaptive scheme less robust. The use of an

appropriate weighting filter H is a way to deal with this issue.

All prediction filters amplify high frequencies, therefore,

if we use a high pass filter H, the undesirable effects

are compensated. The price for using this technique is an

amplification of low frequency errors [6].

Another phenomenon commonly observed when imple-

menting adaptive controllers is the occurrence of large over-

shoots during the transient time. As shown in [14], this

problem can be eliminated by varying the order of the

adaptive filter F . The implementation of variable-order filters

is possible because lattice filters are not only time recursive,

but order recursive as well. Notice that it is not feasible

to vary the order of the filter F when using classical RLS

algorithms. Here, the lattice filter was implemented using

the weighting filter H shown in Fig. 12 with orders 6 and

24, where the order of F was incremented by 2 every 100

steps. Fig. 13 shows time series, power spectral densities

(PSDs) and the histogram for the case L = 24. The achieved

performances are shown in Table I.

VI. CONCLUSIONS

This paper presented experimental results on the appli-

cation of recursive techniques for implementing adaptive

tuning and control on a commercial HDD. Two methods

were demonstrated here: iterative adaptive tuning using the

inverse QR-RLS algorithm and frequency-weighting RTFAC

using an unwindowed lattice filter. Experimental results

show the effectiveness of these two approaches. Especially

important it is to remark that the use of the unwindowed

lattice filter makes the RTFAC scheme converge considerably

faster than when using other adaptive filters tested in this

experiment. Future research will integrate track seeking with

track following adaptive control.
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TABLE I

3σ VALUE OF THE POSITION ERROR SIGNAL (PES) AS A PERCENTAGE OF THE TRACK WIDTH

Head 0 Head 1 Head 2

yre f = 103 yre f = 104 yre f = 2 ·104 yre f = 103 yre f = 104 yre f = 2 ·104 yre f = 103 yre f = 104 yre f = 2 ·104

LTI Feedback Control 18.0487 21.8415 23.2253 21.4312 19.1459 23.0018 23.5694 22.0469 24.1790

CT using the inverse QR algorithm (L=6) 5.3372 5.2591 5.3670 6.2368 5.8984 5.8023 6.2368 5.8984 7.3703

CT using the inverse QR algorithm (L=12) 5.2713 5.2087 5.3659 5.9567 5.6555 5.7407 6.1090 5.4013 7.0173

CT using the inverse QR algorithm (L=24) 5.2856 5.1800 5.3217 5.8038 5.4684 5.6170 5.8377 5.3387 5.9302

CT using the inverse QR algorithm (L=36) 5.2588 5.1791 4.8073 5.6199 5.4865 5.5195 5.6709 5.3149 5.5072

2-stage CT using the inverse QR algorithm (L=36) 5.0341 5.0497 4.7815 5.3806 5.2741 5.2297 5.5260 5.2111 5.4395

RTFAC using the lattice algorithm (L=6) 5.5935 5.6775 5.2485 6.4157 5.7239 5.6059 6.7697 7.5971 6.4161

RTFAC using the lattice algorithm (L=24) 5.7151 5.4988 5.0875 6.4810 5.8122 5.6111 6.9194 6.7757 6.4046
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Tuned Fixed  F              

Fig. 11. Experiment performed on control tuning with L = 24 at head 0
and track 10,000. Top Plot: Time series. Middle Plot: PSDs. Bottom Plot:

Histogram.
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Fig. 12. Bode plot of weighting filter H used in the implementation of
RTFAC.
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LTI Control + Fully Adaptive  F

Fig. 13. Experiment performed on real-time fully adaptive control with
L = 24 at head 0 and track 10,000. Top Plot: Time series. Middle Plot:

PSDs. Bottom Plot: Histogram.
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