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Néstor O. Pérez Arancibia, Chi-Ying Lin, Tsu-Chin Tsao and James S. Gibson

Abstract— This paper presents a control scheme intended
to target both the non–repeatable and repeatable runout dis-
turbances affecting the dynamics of a hard disk drive (HDD).
The design can be broken up into three stages. The first stage
consists of a LTI feedback controller designed using classical
techniques. The second stage consists of a RLS–based adaptively
tuned controller. Finally, the last stage incorporates a new
controller which integrates repetitive and adaptive elements.
The repetitive part of this controller allows us to target specific
periodic disturbances visible in the disturbance spectrum. The
adaptive part is intended to cancel the inter–notch stochastic
disturbances. The key element in this design is the formulation
of an appropriate optimization problem, solvable recursively by
the use of some of the available adaptive–filtering algorithms.
Experimental results obtained from the implementation of this
method in a commercial HDD demonstrates the effectiveness
of this approach.

I. INTRODUCTION

The control of hard disk drives (HDD) has attracted the

attention of many researchers for many years. Typically,

two kind of control problems have been defined: track–

seeking and track–following. The former deals with the

motion control of the head between tracks, the latter with

maintaining the head on the center of the HDD track. In this

paper we focus on track–following.

It has been reported that track–following can be thought of

as an output disturbance rejection problem [1], [2], [3]. There

exist two main sources of disturbances in the hard disk drive

dynamics. The first is denominated repeatable runout (RRO),

which is produced by imperfections and eccentricities on

the tracks. The second is non–repeatable runout (NRRO),

produced by the aggregated effects of disk drive vibrations,

electrical noise in the circuits and the measurement channels.

Model–based noise rejection adaptive schemes are well

suited to deal with the problems previously described here.

There exist a series of slightly different model–based adap-

tive methods, being the adaptive inverse control (AIC) [4]

and the adaptive–Q (A–Q) [5] the two most prominent

schemes. Despite the different denominations, they are essen-

tially the same. The implementation of an add–on adaptive

controller for disk drives, based on the AIC scheme is

described in [3]. There, the adaptive algorithm employs the

classical RLS recursions in [6]. The experimental implemen-

tation of an A–Q scheme is demonstrated in [1]. There,
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the disk drive open–loop plant is stabilized using a linear

time–invariant (LTI) LQG compensator and then an adaptive

filter Q is added using the typical configuration in [5]. The

adaptation is done using low order LMS and RLS algorithms

and implemented in real time using a TMS320C67 floating

point digital signal processor (DSP).

In [2] we showed that using the frequency weighting

adaptive structure in [7], and adaptive methods such as the

inverse QR–RLS algorithm in [8] or the lattice algorithm in

[9], the control performance can be significatively improved

with respect to our previous implementations on the same

experimental setup described in [1]. Nonetheless, analyses

in the frequency domain indicate that part of the power

due to RRO components still remains. To deal with this

issue, in this work, we introduce a control scheme that

specifically targets the RRO components in the disturbance

signal. This method integrates repetitive and adaptive com-

ponents based on both the idea of internal model [10] and

minimum variance regulation [11]. In order to achieve this

objective, the challenge was the formulation of a meaningful

optimization problem that incorporated both approaches.

This article reports empirical evidence on the validity of

this technique, since the controller presented here achieves

both a significant attenuation of the RRO components and

an improvement with respect to the performance achieved

by the controller presented by us in [2]. A similar method

was attempted in [12], however, the results reported here are

significantly better. The experimental implementation of the

control system was done using a Mathworksr xPC Target

system.

The paper is organized as follows. Section II describes

the systems involved in the experiment. Section III explains

the development of the adaptive–repetitive control method.

Section IV reviews some aspects of the adaptive feedforward

cancelation (AFC) method in [13] used for comparison

employing the data presented in [14]. Experimental results

are presented in Section V, and finally, some conclusions are

drawn in Section VI.

II. EXPERIMENT AND SYSTEMS

The experimental setup is identical to the one described in

[2] running with a sample–and–hold rate of 9.36 KHz. The

open–loop plant, denoted by P, is connected to the systems

C and U1, as shown in Fig. 1, defining closed–loop plants

G1 and G2 respectively. Thus, when C is on and U1 is off the

mapping from u to y is G1, and when both C and U1 are on

the mapping from u to y is G2. The controller C was designed

employing classical techniques, and U1 is the result of a

minimum–variance RLS–based tuning process, as explained
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in [2]. Identified models for the open–loop plant and the two

closed–loop plants, denoted by P̂, Ĝ1 and Ĝ2, are shown in

blue, in green and in red in Fig. 2. Also, the controllers C

and (C−U1) determine the output–sensitivity functions (the

mappings from w0 to y), whose estimates ŜC =
(

1+ P̂C
)−1

and Ŝ(C−U1) =
[

1+ P̂(C−U1)
]−1

are shown in blue and

in green in Fig. 5. Similarly, estimates for the reference–

sensitivity functions (the mappings from yre f to y), N̂C =

P̂C
(

1+ P̂C
)−1

and N̂(C−N1) = P̂(C−U1)
[

1+ P̂(C−U1)
]−1

are shown in blue and in green in Fig. 6.
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Fig. 1. Block diagram of LTI feedback control system. P(z) = open–
loop plant; C(z) = classical LTI feedback controller; y = position of the
head; u = input signal; wo = output disturbance; yre f = position reference;
ỹ = position error; G1(z) = closed–loop plant with C(z) on and U1(z) off;
G2(z) = closed–loop plant with both C(z) and U1(z) on.
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Fig. 2. Bode plot for identified plants P̂, Ĝ1, and Ĝ2.

III. ADAPTIVE–REPETITIVE CONTROL

As it will be shown in the experimental section, the

RLS–based tuned control–system U1 is able to improve the

performance TMR index significantly when compared with

the performance achieved by the use of the controller C

alone. However, the power spectral densities (PSD) indicate

that the influence of the RRO disturbances is not completely

counteracted by the use of (C−U1). As shown in red in

Fig. 8, many spikes allocated at frequencies multiple of

120 Hz still remain. This suggests that an adaptive scheme

that considers this information might be more effective than

one that does not. Two prominent methods for dealing with

RRO disturbances have been described in the literature.

The first one is repetitive control, which uses the concept

of internal model in [10] for synthesizing LTI controllers.

The second method adaptively finds the Fourier coefficients

corresponding to a number of given sinusoidal disturbances

[13]. In this paper we introduce a control scheme that

simultaneously integrates repetitive and adaptive elements.

G2(z)- - h? -u y

w2

Fig. 3. Closed–loop plant G2 and output disturbance w2.

To begin with, we assume Ĝ2 = G2 and we repre-

sent the aggregated effects of all the disturbances acting

on the system by the output disturbance w2, i.e., w2 =
[1+P(C−U1)]

−1
w0. This is illustrated in Fig. 3. Then

we choose the internal model D = 1− q(z,z−1)z−N , where

q is a zero–phase low–pass filter and N is the period of

the periodical disturbance to be attenuated. Notice that the

operator q allows us some flexibility over the frequency range

of disturbances to be canceled while maintaining stability.

The filter D has a combed shape with notches matching the

frequencies of the periodic disturbance signals. Thus, ideally

we would like to look for a filter K that makes the frequency

respond of the LTI system 1 − KG2 close to zero at the

same periodic frequencies. This is achievable by solving the

Bézout identity

RD+KG2 = 1, (1)

where R and K are the unknowns.

For the Diophantine equation in (1) the existence of

solutions for R and K will be assured if G2 and D are

coprime. Furthermore, (1) characterizes a whole family of

stabilizing internal model type repetitive controllers [15].

Following the general guidelines in [15] and [16] a particular

solution is presented here. The method starts by separating

G2 into its minimum and non–minimum phase parts Go and

Gi respectively. Thus,

G2 =
B

A
=

B+B−

A
= GiGo,

Go =
B+

A
, Gi = B−.

(2)

Where B+ and B− are the cancelable and uncancelable parts

of the numerator B of G. Now, substituting (2) into (1) we

can write

RD+K′Gi = 1, K′ = KGo. (3)
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Among the infinity many solutions to (3) it is verifiable by

simple algebraic manipulations that one of the solutions is

given by

Ro =
1

1− (1− γG∗
i Gi)qz−N

,

K′
o = qγG∗

i z−NRo, Ko = K′
oG−1

o .

(4)

Here, G∗
i is defined as G∗

i (z
−1) = Gi(z), and γ as a positive

real number.

At this point, questions on the causality and the stability of

the controller Ko arise. The zero–phase filter q is noncausal

and the plants Gi and G∗
i might not be causal as well.

Nonetheless, the causality of Ko is guaranteed for a suffi-

ciently large N, since z−N is a factor of both (1−γG∗
i Gi)qz−N

and γqG∗
i z−N . Also, it is verifiable, by the use of the small

gain theorem that the stability of Ko and the stability of Ro

are ensured by the sufficient condition

|1− γG∗
i (e

jθ )Gi(e
jθ )| <

1

|q(e jθ )|
, ∀ θ ∈ [0,π]. (5)

In (5) the real number γ can be thought of as a stability and

performance tuning parameter. Fig. 4 shows the fulfilment

of the condition (5) and the achievable performances for

three different values of γ: 4.5 × 10−7, 1.5 × 10−7 and

4.5× 10−8. Clearly, the deepest notches are achieved with

the value 4.5 × 10−7, at the expense of some frequency

amplification on the inter–notch regions. We choose this

last value because the amplified regions can be canceled

adaptively as we will show later. The bottom plot in Fig. 4

shows 1−G2Ko, which is the sensitivity function from w2

to y. However, what is more interesting at this point is

the shape of the overall sensitivity function SC−U1−U2
=

[1+P(C−U1 −U2)]
−1

from wo to y, and also the shape of

NC−U1−U2
= P(C−U1−U2) [1+P(C−U1 −U2)]

−1
from yre f

to y, with U2 =−Ko(1−KoG2)
−1. Estimates for both transfer

functions are shown in red in Fig. 5 and Fig. 6 respectively.

Notice that this internal–model–based controller is not only

able to create deep notches but also to improve the rejection

over low frequencies at the expense of some amplification on

inter–notch regions, that can be attenuated, anew, adaptively.

Now, consider an arbitrary asymptotically stable and ratio-

nal LTI filter Q, i.e., Q ∈ RH∞. Also, let R(Q) = Ro −QG2,

and K(Q) = Ko + QD. Then it is clear that these R and K

define an entire family of solutions to (1). Notice that R and

K belong to RH∞ for all Q ∈ RH∞ provided that D and G2

are stable. This parameterization allows us to formulate the

control objective as an optimization problem. Specifically we

would like to minimize the variance of the random variable

ỹ(k) ∀ k. Thus, let ỹ be a stationary mean– and covariance–

ergodic random process for any given stable LTI filter Q.

Then, the problem becomes

min
Q∈RH∞

E{ỹ2(k)}. (6)

Notice, that if E{ỹ2(k)} = σ 2, the ergodicity assumption

implies that limN→∞
1
N ∑N

k=0 ỹ2(k) = σ 2, with probability 1.
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Fig. 4. Top plot: Sufficient stability condition for different values of γ .
Bottom plot: Estimated sensitivity function from w2 to y, 1−G2Ko, for
different values of γ .

Also, it is verifiable that (6) is equivalent to the H2 problem

min
Q∈RH∞

‖W2 −G2KW2‖2, (7)

where W2 is a stable filter that maps a stationary, white,

zero–mean, unit–variance Gaussian random sequence to the

disturbance w2. This filter is usually called the disturbance

model of w2. Finally, considering (1) and the parameterized

systems K(Q) and R(Q), (7) can be re–arranged as

min
Q∈RH∞

‖RoDW2 −QG2DW2‖2. (8)

The work we have done thus far enables us to translate

the original problem into an adaptive filtering one solvable

in real–time by the use of algorithms like LMS or RLS. This

adaptive scheme is shown in Fig. 7. The first thing to notice

is that the controller K(Q) = Ko +QD can be broken into a

repetitive part Ko and an adaptive part QD. The fundamental

idea here is that the adaptive algorithm is ran with a regressor

formed by values from the signal Dw2 and not w2. Thus, the

RRO part of w2 is attenuated by Ko and what is left, Dw2, is

attenuated adaptively. For this work we choose to implement

the LMS and inverse QR–RLS algorithms in [8]. Thus, first

we introduce the constrain Q(z) = ∑
No
i=0 θiz

−i, where No is the

order of the filter. Then, using LMS, (6) can be approximated

iteratively via the recursion

θ(k) = θ(k−1)+ µΨT (k)[δ (k)−Ψ(k)θ(k−1)], (9)

with k ≥ 0, θ(−1) = 0, θ(k) = [θ0(k) · · · θNo(k)]
T , the de-

sired value δ (k) = RoDŵ2(k), the regression matrix Ψ(k) =
[Ĝ2Dŵ2(k) · · · Ĝ2Dŵ2(k−No)], and the positive step–size

µ . Similarly, the inverse QR–RLS algorithm can be imple-

mented by forming the same Ψ(k) and δ (k).
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from yre f to y, for controllers C, C−U1, and C−U1 −U2 respectively.

IV. REVIEW OF THE ADAPTIVE FEEDFORWARD

CANCELATION METHOD

In order to validate the method developed here, we com-

pare the experimental results with the ones presented in [14],

obtained by the use of the so–called adaptive feedforward

cancelation (AFC) method in [13]. In this case, the RRO

occurs at frequencies 120m Hz, with m = 1,2, . . . ,nmax due

to the 7200 rpm speed of the disk. Here, we consider the

closed–loop plant G2 and we assume that this is subjected

to the output disturbance d = w2 consisting of a linear com-

bination of harmonic signals with the fundamental frequency

of 120 Hz, i.e.,

d(k) =
nmax

∑
i=1

{

ai(k)sin

(

2πik

Nrev

)

+bi(k)cos

(

2πik

Nrev

)}

, (10)
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Ĝ2(z)Q(z) ¾¾¾

JJ

J
J]

h−?

w2 +N2yre f

yu

yre f−

−
ŵ2
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Fig. 7. Adaptive–repetitive control scheme.

where i is the index for the harmonic and Nrev is the number

of samples per revolution. Thus, the idea is to adaptively

generate a control signal u, such that, the output G2u would

cancel the disturbance d. Here, we slightly modify the

algorithm in [13] to achieve that objective. To begin with,

notice that if the whole system is modeled as in Fig. 3, then

the output would be y(k) = [G2u] (k)+ d(k). Then, in order

to cancel the disturbance, the control signal should satisfy

that

[G2u] (k) = −d̂(k), (11)

where d̂(k) is an estimate for the RRO disturbance d(k),
which is adaptively updated. Recalling that d is formed by

finite linear combinations of sines and cosines, the control

signal u has the same structure, i.e., it consists of a finite sum

of sines and cosines. Therefore, the effect of G2 over u is that

each harmonic component of u will be modified in phase and

amplitude. The phase modification can be estimated off–line

through system identification. The amplitude modification is

irrelevant, since it can be implicitly estimated. Thus, the

algorithm in [13] to generate u(k), modified for our case,

becomes

u(k) = −d̂RRO(k) (12)

d̂RRO(k) =
nmax

∑
i=1

{

âi(k)sin

(

2πik

Nrev

)

+ b̂i(k)cos

(

2πik

Nrev

)}

(13)

âi(k) = âi(k−1)+ γiy(k−1)sin

(

2πik

Nrev

+φi

)

(14)
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b̂i(k) = b̂i(k−1)+ γiy(k−1)cos

(

2πik

Nrev

+φi

)

. (15)

Where the γi are adaptation gains, chosen differently for

each harmonic. The angle φi = ∠G2(e
jωi) is the phase

modification added in order to compensate the effect of

G2 on u, with ωi being the angular frequency of the ith

harmonic. For stability analysis and other details concerning

the algorithm see [13]. The explanation presented in this

section is largely based on [14].

V. EXPERIMENTAL RESULTS

In the experiments presented here, the sample–and–hold

rate was 9.36 KHz, externally determined by the HDD clock.

The controller U1 is computed as U1 = Fo(1 + FoĜ1)
−1,

where Fo is a 36th order filter tuned on the position head 0–

track 15,000 as described in [2]. The system Ko was designed

with γ = 4.5× 10−7 and the filter K is adapted using the

LMS algorithm with No = 128 and the inverse QR-RLS

algorithm with orders No = 16 and No = 36. The perfor-

mances, quantified by the 3σ index, obtained at different

positions of the HDD are shown in Table I, which contains

an extended version of the results in [17]. In all cases

the results achieved by the adaptive–repetitive controller are

better compared to the ones achieved by the use of the

combined LTI controller (C −U1) alone, and also by the

combined controller (C−U1−U2) alone. In order to validate

the adaptive–repetitive method, we contrast the obtained

results with the ones obtained by the use of the AFC method.

As shown in Table I, for the case in which we use the inverse

QR–RLS algorithm with order 36 the results are similar to

the ones achieved using the AFC method. However, from

a computational point of view, the method presented here

is significantly simpler. Also, it is important to emphasize

that the AFC–based controller is added to (C−U1), which

explains to a great extend the high performance achieved. We

refer to the controller based on the AFC method as KRRO.

Fig. 8 shows time series, power spectral densities (PSDs),

histograms and a deviation graph, for a experiment at the

location head 0–track 15,000, using a 128th order LMS

filter. The plots show in blue all curves corresponding to

the signal ỹ for the system under the LTI controller C, in red

all curves corresponding to the signal ỹ for the system under

the LTI controllers C and Fo, i.e., (C−U1), and in green all

curves corresponding to the signal ỹ for the system under the

controllers C, Fo and K (adaptive–repetitive). The curves for

the system under the controllers C, Fo and Ko, i.e., (C−U1−
U2) are omitted. The time series sharply show the difference

that the controller Fo makes with respect to the controller

C alone. The difference between the controller Fo and K

is more subtle, nevertheless this can be fully appreciated in

the comparison of the PSDs, being clear that the objective

of targeting the RRO components in the disturbance has

been accomplished, which is emphasized by the close–ups in

Fig. 9. Also, as predicted by the comparison of the sensitivity

functions in Fig. 5 the improvement in terms of the 3σ value

is explained by two elements, the attenuation of the RRO

components and the further reduction of the low frequency

content. The two bottom plots in Fig. 8 compare the data

statistically. Both, the histograms, and the deviation from

the center graph, simply show that the adaptive–repetitive K

controller makes the data to concentrate closer to the center

of the track when compared with the former controllers.

VI. CONCLUSIONS

This paper presented a control scheme intended to target

both, the NRRO and RRO components of the disturbance to

which a HDD is subjected. This scheme unites the design

methodology in [2] with the synthesis of a controller that

integrates repetitive and adaptive components by the formu-

lation of an appropriate optimization problem. Experimental

results were presented to demonstrate the effectiveness of

this approach.
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TABLE I

3σ VALUE OF THE POSITION ERROR SIGNAL (PES) AS A PERCENTAGE OF THE TRACK WIDTH

Head 0 Head 1 Head 2

yre f = 1e4 yre f = 1.5e4 yre f = 2e4 yre f = 1e4 yre f = 1.5e4 yre f = 2e4 yre f = 1e4 yre f = 1.5e4 yre f = 2e4

C 18.1429 17.2467 20.6328 16.3020 18.6647 22.6426 22.0292 23.3535 24.4753

(C−U1) 5.3699 5.1232 5.0475 5.1924 5.4398 4.8723 5.8560 5.0029 5.6392

(C−U1 −U2) 4.7114 4.5694 4.4946 4.4731 4.3640 4.1393 5.2075 4.7034 4.7845

(C−U1) & K (LMS–128) 4.6057 4.3678 4.2991 4.3663 4.2926 4.0389 5.0778 4.6138 4.7316

(C−U1) & K (I–QR–RLS–16) 4.5473 4.2583 4.2287 4.3654 4.3277 4.0187 5.0292 4.6059 4.5529

(C−U1) & K (I–QR–RLS–36) 4.4950 4.0231 4.2606 4.2891 4.1485 4.0189 4.8111 4.4386 4.3762

(C−U1) & KRRO (AFC) 4.3427 4.0704 4.1812 4.4606 4.2179 3.9496 5.0310 4.5811 4.2149

0 2 4 6 8 10 12 14 16 18 20
-0.5

-0.25

0

0.25

0.5

Time (sec)

C
o
n
tr

o
l 
E

rr
o
r 

 y
-y

re
f

Position Error Time Series

 

 

 C

( C - U
1
)

( C - U
1
) & K

10
1

10
2

10
3

-100

-80

-60

-40

-20

Frequency (Hz)

P
o
w

e
r/

fr
e
q
u
e
n
c
y
 (

d
B

/H
z
)

Position Error PSDs

 

 
 C

( C - U
1
)

10
1

10
2

10
3

-100

-80

-60

-40

-20

Frequency (Hz)

P
o
w

e
r/

fr
e
q
u
e
n
c
y
 (

d
B

/H
z
)

Position Error PSDs

 

 
( C - U

1
)

( C - U
1
) & K

-0.1 -0.05 0 0.05 0.1 0.15
0

1000

2000

3000

4000

5000
Histogram of Output Error

Magnitude

N
u

m
b

e
r 

o
f 

S
a

m
p

le
s

 

 

( C - U
1
)

 C

-0.1 -0.05 0 0.05 0.1 0.15
0

1000

2000

3000

4000

5000
Histogram of Output Error

Magnitude

N
u

m
b

e
r 

o
f 

S
a

m
p

le
s

 

 

( C - U
1
) & K

( C - U
1
)

0 0.02 0.04 0.06 0.08 0.1 0.12 0.14
0

25

50

75

100

Distance from the Center of the Track (% of the Track Width)

P
e

rc
e

n
ta

g
e

 o
f 

S
a

m
p

le
s

Deviation from the Track Center

 

 

 C

( C - U
1
)

( C - U
1
) & K

Fig. 8. Experiment performed on head 0 and track 15,000. Curves in blue

correspond to the HDD under controller C. Curves in red correspond to the
HDD under controllers C and Fo, i.e., C−U1. Curves in green correspond
to the HDD under controllers C, Fo, and the adaptive-repetitive controller
K using a 128th order LMS filter. Top Plot: Time series. Second-row Plot:

PSDs. Third-row plot: Histograms. Bottom Plot: Deviation from the center
graphs. This plot shows, in percentage, the number of samples inside a
certain distance from the center of the track.
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Fig. 9. Experiment performed on head 0 and track 15,000. The plots
show close-ups of the PSDs comparing the performance of the HDD system
under controllers C and Fo, i.e., C−U1 and under C, Fo and the adaptive-
repetitive controller K. Since the spikes due to RRO are at frequencies 120m

Hz, m = 0, 1, 2, · · · , and the Nyquist frequency is 4680, the period N

in D = 1−q(z,z−1)z−N is chosen to be 78. As predicted by the sensitivity
functions in Fig. 5, the most significant attenuations, corresponding to the
deepest notches in Fig. 5, are between 0 and 960 Hz.
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