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Abstract— In this paper, we present a model-free experimental
method to find a control strategy for achieving stable and autonomous,
from a control perspective, flight of a dual-actuator biologically inspired
flapping-wing flying microrobot. The main idea proposed in this work
is the sequential tuning of parameters for an increasingly more complex
strategy in order to sequentially accomplish more complex tasks:
upright stable flight, straight vertical flight, and stable hovering with
altitude and position control. Each term of the resulting multiple-input–
multiple-output (MIMO) controller has a physical intuitive meaning and
the control structure is relatively simple, such that, it could potentially
be applied to other kinds of flapping-wing robots.

I. INTRODUCTION
Experiments demonstrating the first controlled vertical uncon-

strained flight of a 83-mg flapping-wing flying microrobot were pre-
sented in [1]. There, the idea of using separate actuators exclusively
for control was introduced and demonstrated, through static and
flying experiments. The argument for designing, developing, and
integrating separate actuators exclusively for control is biologically
inspired, based on evidence suggesting that insects in nature employ
separate muscles for power and control, respectively [2]. There are
important practical problems that arise in the fabrication process
developed for materializing the design in [1]. Specifically, fabrica-
tion needs to be essentially perfect in order to avoid asymmetries
in the prototypes that would make them very difficult to stabilize
and control, or uncontrollable. Despite these fabrication challenges,
unconstrained flight control of the prototype in [1] was preliminar-
ily, but convincingly, demonstrated using the ideas and findings on
altitude control and pitch control in [3]–[5], and references therein.

A different design approach, first proposed in [6], was fully
developed in the work presented in [7], which is the basic design of
the robotic prototype we consider in this paper. This design consists
of dual completely independent power actuators that drive each of
the wings independently through two separate transmissions, and
departs significantly from the previous purely biologically inspired
robotic models in [1]. An adaptive model-based control strategy for
the prototype in [7] was proposed and tested in the work presented
in [8]. In this paper, we propose a new control strategy, which is
entirely experimental and model-free, but takes advantage of the
knowledge on flapping-wing systems gathered through static and
flying experiments in [3]–[5].

In this paper, we provide evidence that the control philosophy
first proposed in [1], based on asymmetrical flapping patterns, is
applicable to the general flapping-wing flight control case. The
experimental results presented here are significantly better than
those presented in [1], mainly because the design considered in
this work (in Figs. 1 and 2) is, from a practical perspective, more
controllable and robust to fabrication errors. The main new idea
explored in this paper is the feasibility of finding a multiple-input–
multiple-output (MIMO) controller through a sequence of three
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is now with the Department of Aerospace and Mechanical Engineering,
University of Southern California, Los Angeles, CA 90089-1453, USA
(email: perezara@usc.edu).

Fig. 1. Photograph of one of the flapping-wing flying microrobots used
in the work presented in this paper. The prototypes considered in this work
have two completely independent lateral actuators used simultaneously for
power and control. The ball-shaped markers glued to the robot are used by
a Vicon motion capture system in the estimation of position and orientation
of the robot. This robotic prototype was entirely developed and fabricated
at the Harvard Microrobotics Laboratory.
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Fig. 2. Illustration of the robotic insect prototype employed in the flight
experiments presented in this paper. The direction of the inertial frame axes
are labeled as

{
0X̂,0 Ŷ ,0 Ẑ

}
and the direction of the body frame axes are

labeled as
{

0x̂,0 ŷ,0 ẑ
}

. The origin of the body frame coincides with the
robot’s center of mass. In this illustration, the origin of the body frame is
displaced for the sake of clarity.

set of tuning experiments, in which in every step, the complexity
of the controller structure is increased in order to accomplish
more sophisticated control objectives, while the microrobot is in
unconstrained flight. In the first set of experiments, we tune a
MIMO scheme that directly filters the pitch and roll angles of the
robot. Simultaneously, we add to the control scheme a term that
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Fig. 3. (a) Symmetric Flapping: Assuming perfect fabrication, no body
torques are generated and the angles of rotation in three dimensions about
the robot’s body axes, 0x̂ (pitch), 0ŷ (roll) and 0ẑ (yaw), stay at 0◦. (b)
Pitch Asymmetrical Flapping: This flapping pattern makes the robot produce
torques about the pitch axis. (c) Roll Asymmetrical Flapping: This flapping
pattern makes the robot produce torques about the roll axis.

filters the velocities of the robot during flight along the pitch and
roll axes, which makes the control strategy robustly stable. In the
second set of experiments, we demonstrate that pitch and roll can
be actuated in order to control the robot’s position on the horizontal
plane. Clearly, the same method can be used to correct for drift,
which allows the robot to perform straight vertical flight. Finally,
in the last set of experiments, we close the altitude control loop in
order to make the robot hover.

The rest of the paper is organized as follows. Section II describes
the flapping-wing microrobot used in the experiments and the main
experimental setup. Section III describes the proposed model-free
control strategy. Experimental results are presented in Section IV.
Finally, some concluding remarks are given in Section V.

Notation–
• R, R+ and R++ denote the sets of reals, non-negative reals

and strictly positive reals, respectively.
• Z, Z+ and Z++ denote the sets of integers, non-negative

integers and strictly positive integers, respectively.
• The variable t is used to index discrete time, i.e., t =
{kTs}∞k=0, with k ∈ Z+ and Ts ∈ R++. Ts is referred to
as the sample-and-hold time.

• The variable τ is used to index continuous time. Thus, for
a generic continuous-time variable x(τ), x(t) is the sampled
version of x(τ), and vice versa.

• z−1 denotes the delay operator, i.e., for a signal x, z−1x(k) =
x(k− 1) and conversely zx(k) = x(k+ 1). For convenience,
z is also the complex variable associated to the z-transform.

• s−1 denotes the integrator operator and conversely s denotes
the differential operator. For convenience, s is also the complex
variable associated to the s-transform.

• A vector ~v ∈ R3 is written with respect to the inertial
orthogonal frame,

{
X̂, Ŷ , Ẑ

}
, as 0~v, and with respect to the

body orthogonal frame, {x̂, ŷ, ẑ}, as b~v. The unitary vector
with the same direction as ~v is written as v̂.

II. DESCRIPTION OF THE MICROROBOT AND MAIN
EXPERIMENTAL SETUP

A. Force and Torque Generation
A photograph of one of the robotic prototypes used in this work is

shown in Fig. 1. An illustration of the same prototype, with the most
relevant variables and components labeled, is shown in Fig. 2. This
robotic design, first presented in [7], was entirely developed and
fabricated at the Harvard Microrobotics Laboratory based on design
principles and models that previously demonstrated the ability to
liftoff [9] and fly under control in one degree of freedom [3], [4].

The robot shown in Figs. 1 and 2 is composed of two independent
identical piezoelectric bending bimorph cantilever actuators of the

Trajectory of 
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Fig. 4. Illustration depicting the generation of lift and drag forces by a wing
(the right wing in this case) during a single flapping cycle. A wing hinge
connects the transmission to the wing, so that, when the wing is flapped
according to a sinusoidal angle ϕR(τ), aerodynamic and inertial forces
produce a passive rotation θR(τ). The generation of θR(τ) implies that
the wing faces the air with an angle of attack necessary for creating time-
varying lift and drag forces, the vectors ~γLR

(τ) and ~γDR
(τ). A simplified

and idealized version of the center of force trajectory is depicted in red.

same kind in [10] and [9], which are used to provide mechanical
power and for control simultaneously, two flexure-based transmis-
sions (one for each side of the robot), a pair of airfoils, and an
airframe, which serves as mechanical ground. Each transmission
maps the approximately linear motions of its corresponding actuator
into the flapping motion of the corresponding wing, labeled as
ϕR(τ) and ϕL(τ) in Fig. 2 for the right and left wing, respectively.
The transmissions consist of links and joints with geometries
designed to maximize the product of stroke amplitude and first
resonant frequency, given known actuator and airfoil properties [7].

The use of dual power actuators, as shown in Figs. 1 and
2, allows for multiple flapping combinations and strategies that
are matter of current and further research. In principle, it is not
obvious what kinds of periodic flapping patterns are best in terms
of energy efficiency, control effectiveness, and maneuverability.
However, from what is observed in nature [2], it seems reasonable
to use sinusoidal flapping patterns, though other options, such
as split-cycle flapping, have been proposed in the literature [6].
Here, neglecting the nonlinearities observed in this kind of flapping
system [11], the flapping patterns by design are chosen to be

ϕR(τ) = ϕAR(τ) sin (2πfRτ) + ϕBR(τ), (1)
ϕL(τ) = ϕAL(τ) sin (2πfLτ) + ϕBL(τ), (2)

for the right side and left side of the robot in Fig. 2, respectively.
Notice that if

ϕAR(τ) = ϕAL(τ), fR = fL, and ϕBR(τ) = ϕBL(τ) = 0,
(3)

we obtain the symmetric flapping in Fig. 3-(a). For flapping systems
actuated by piezoelectric actuators, the discrete-time identified
mappings from the actuator excitation to the sampled flapping angle,
are approximately linear time-invariant (LTI) [11], and therefore,
(1) and (2) are approximately achieved by exciting the right actuator
and the left actuator respectively with

νR(t) = αR(t) sin (2πfRt) + βR(t), (4)
νL(t) = αL(t) sin (2πfLt) + βL(t), (5)

where −1 6 νR(t) 6 1 and −1 6 νL(t) 6 1. The excitation
signals defined by (4) and (5) are mapped to voltages with the
same form over the range [0, 300] V, used to power the piezoelectric
actuators of the robot, as previously described in [3]–[5], [11], [12],
and references therein.

Here, we employ two specific basic flapping modes that are
combined in order to generate the body torques required for flight
control. The first flapping mode, used to generate pitch torque, is
shown in Fig. 3-(b), which is produced by exciting the actuators
with

αR(t) = αL(t), fR = fL, and βR(t) = βL(t) 6= 0. (6)

In the particular case shown in Fig. 3-(b), βR(t) = βL(t) > 0,
which produces a positive pitch torque by shifting the mean stroke,
so that, ϕBR(τ) = ϕBL(τ) > 0. Similarly, βR(t) = βL(t) < 0



produces a negative pitch torque by shifting the mean stroke, so
that, ϕBR(τ) = ϕBL(τ) < 0. The second flapping mode, used to
generate roll torque, is shown in Fig. 3-(c), which is produced by
exciting the actuators with

αR(t) 6= αL(t), fR = fL, and βR(t) = βL(t) = 0. (7)

In the particular case shown in Fig. 3-(c), αR(t) < αL(t), which
creates a positive roll torque by generating a larger average lift
force on the left than the average lift force generated on the right.
Similarly, αR(t) > αL(t) produces a negative roll torque by
generating a larger average lift force on the right than the average
lift force on the left.

The production of forces by flapping wings is a very complex
phenomenon to analyze in detail. However, there are some well
established fundamental facts that allow us to understand how
forces and body torques are generated and can be used to attain
unconstrained controlled flight. An illustration of the robot’s right
wing depicting the generation of lift and drag forces during a
flapping cycle is shown in Fig. 4. Here, a wing hinge connects
the transmission to the wing, so that, when the wing is flapped
according to a sinusoidal angle ϕR(τ), aerodynamic and inertial
forces produce a passive rotation θR(τ). The generation of θR(τ)
implies that the wing faces the air with an angle of attack necessary
for the creation of time-varying lift and drag forces, the vectors
~γLR(τ) and ~γDR(τ). As is customary in the field of aerodynamics,
the forces ~γLR and ~γDR are conceptual tools used to model a
complex phenomenon in which the wing flapping produces a time-
varying distribution of forces over the surfaces of the wing. In this
case, the wing in Fig. 4 can be thought of as completely 2-D, which
implies that the generation of forces can be treated as a vector field
acting on a surface in space (the wing), which include aerodynamic
and inertial contributions.

In principle, using basic vector calculus, it is possible to compute
the time-varying total force exerted on the wing and the correspond-
ing center of force exactly, from the force distribution. However,
it is experimentally very challenging to design a sensor or devise
an indirect method to measure the distribution of forces over the
wing. A simplified approach is to measure the total forces along
predetermined directions, as discussed in [4], [12], [13], and make
some assumptions about the geometric location of the center of
force. For a flapping system of the kind considered here, there
exist accurate records of the forces generated along the ẑ-axis (lift
forces) [4], [13] and preliminary measurements of the drag forces
along the ϕ̂R direction, as defined in Fig. 4 [14]. Also, from a
simple analysis of the centrifugal forces acting on the wing, it is
possible to determine that the forces along the ρ̂R are negligible
compared to the lift and drag forces acting on the wing. Thus, from
the data presented in [4], [13] and [14], for the unbiased flapping
ϕR(τ) = ϕAR sin (2πfRτ), it is reasonable to model the sampled
lift force as ~γLR(t) = γLR(t)x̂, where γLR(t) is a periodic signal
with frequency 2fR Hz with two positive maxima per cycle at
2πfRt = ωRt = nπ, n ∈ Z+ and two negative minima per cycle
at 2πfRt = ωRt =

(
n+ 1

2

)
π, n ∈ Z+. In steady state, for the

case discussed here, the DC component of γLR(t), γLR0, is positive
and can be estimated as

γLR0 ≈ AγLR
(t) =

1

NL

NL−1∑
i=0

γLR(t− Tsi) > 0, (8)

where t = kTs, with k ∈ Z, Ts ∈ R, and NL ∈ Z++.
Similarly, the drag force can be modeled as ~γDR(t) =

γDR(t)ϕ̂R, where γDR(t) is a periodic signal with frequency
fR Hz with one positive maximum per cycle at 2πfRt = ωRt =
(2n+ 1)π, n ∈ Z+. Here, the DC component of γDR(t), γDR0,
is theoretically 0 and can be estimated as

γDR0 ≈ AγDR
(t) =

1

NL

NL−1∑
i=0

γDR(t− Tsi) ≈ 0, (9)

where t = kTs, with k ∈ Z, Ts ∈ R, and NL ∈ Z++.
Two fundamental signals in the analysis of autonomous flight

and in the development of a suitable control strategy are the
average lift force γLR0 in (8) and the analogous average lift force

γLL0, corresponding to the right wing and left wing, respectively.
Similarly, other fundamental signals are the average pitch torque
tP 0 and average roll torque tR0, to be discussed later in this paper,
associated with the sampled instantaneous pitch torque ~tP (t) and
sampled instantaneous roll torque ~tR(t), respectively. The reason
why we care about these average signals is that the system dynamics
filter out the high frequencies of the instantaneous signals acting on
the system. To see this, consider the constrained one-dimensional
case in [4], where the equation of motion is simply given by

γL(τ)−mg − cṗz(τ) = mp̈z(τ), (10)

where γL(τ) = γLR(τ) + γLL(τ), m is the robot’s mass, g is the
standard gravity acceleration constant, c is a damping coefficient,
and pz(τ) is the measured robot’s altitude. Thus, defining x(τ) =
γL(τ)−mg, it follows that the mapping from x(τ) to pz(τ) is the
low-pass filter

L(s) =
1

cs+ms2
. (11)

Consequently, for the parameters of the system considered here, as
can be easily demonstrated through simulations, the digital inputs
x(t) and Ax(t) = 1

N+1

∑N
n=0 x(t− n) produce the same outputs

when the discrete-time version of (11) is excited with them. This
also means that when (11) is excited with the continuous-time
versions of x(t) and Ax(t), x(τ) and Ax(τ), the outputs are
essentially the same.

By definition, in steady state (constant amplitude and constant
frequency of the flapping angle), γLR0 is constant. However, if the
DC component of γLR(t) is changed at a rate significantly slower
than the rate of change of γLR(t) itself, we can think of γLR0 as a
function that stays approximately constant during a stroke cycle, but
that might change from one cycle to another. Thus, it is possible to
assume that for a given stroke cycle, the DC component γLR0 and
the mean total force, ΦR, generated by a single flapping wing (the
right wing in this case) throughout a stroke, take the same value. In
biological literature on flapping-wing flight [15]–[17], ΦR is often
estimated as

ΦR =

∫ Ξ

0

ρCΦRν
2
r (ξ)cR(ξ)dξ, (12)

which is a standard quasi-steady blade-element formulation of flight
force (see [13] and references therein), where ρ is the density of
the air, CΦR is the mean force coefficient of the wing throughout
the stroke, ν2

r (ξ) is the mean square relative velocity of each wing
section, cR(ξ) is the chord length of the wing at a distance ξ from
the base, and Ξ is the total wing length. In the case of a sinusoidal
stroke of frequency fR Hz, ϕR(τ) = ϕAR sin(2πfRτ), with a
horizontal stroke plane, the mean square relative velocity of each
wing section can be roughly estimated as

ν2
r (ξ) = 4π2f2

Rξ
2ϕ2

AR

1

TR

∫ TR

0

cos2(2πfRτ)dτ

= 2π2ξ2ϕ2
AR
f2
R, (13)

with TR = f−1
R . This implies that, regardless of the size and shape

of the wing, the estimated mean total flight force directly depends
on f2

R and ϕ2
AR

, which indicates that in order for flying insects to
accelerate against gravity or hover at a desired altitude, they can
modulate the average lift force by changing the stroke amplitude,
ϕAR , or by changing the stroke frequency, fR. Clearly, the same
analysis is valid for the left wing.

At this point, we have all the basic information for proposing an
actuation strategy that would allow us to directly modify the pitch
and roll torques, and the lift force acting on the robot. First, let
us consider the lift force and assume that both wings are flapped
at the same frequency, i.e., fR = fL, then from (12) and (13) it
immediately follows that the magnitude of the total average lift
force acting on the robot, γL0 = γLL0 + γLR0, can be modulated
by simultaneously varying the sampled amplitudes ϕAL(t) and
ϕAR(t), which are proportional to αL(t) and αR(t), because here
the mapping from [νR(t) νL(t)]T to [ϕR(t) ϕL(t)]T is approxi-
mately LTI. Now, considering (12) and (13), it immediately follows



Vicon Motion Tracking

Control DSP

D/A Converter

Motion Tracking Volume Fine Copper Wires
(Actuation Signal)

High Voltage Ampli�er

Fig. 5. Schematic of the Vicon motion capture system used as a sensor.
In this case, six high-speed cameras capture the position of four reflective
markers (small white balls) at 500 frames per second (FPS). The positions
of the four reflective markers are used to determine the center of the frame
of coordinates fixed to the robot’s body, {0px,0 py ,0 pz}, and the attitude
of the robot defined by the Euler angles {θ1, θ2, θ3}, which correspond to
three consecutive rotations about the x̂ (pitch), ŷ (roll) and ẑ (yaw) axes
fixed to the robot’s body. The center of the body frame coincides with the
body center of mass.
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Fig. 6. Upper level flight control diagram. The motion cap-
ture system is the sensor used to estimate the robot position{

0px(t),0 py(t),0 pz(t)
}

and orientation {θ1(t), θ2(t), θ3(t)}. The con-
trolled variables are

{
θPitch(t), θRoll(t),

0 pz(t)
}

. The measurement
error ηm(t) is transformed to sensor noise ηB(t). The control sig-
nal is uB(t) = [β(t) α1(t) α2(t)]

T . The reference is ryB (t) =[
rθPitch

(t) rθRoll
(t) r0pz (t)

]T
.

that the magnitude of the sampled total average roll torque acting on
the robot, tR0, associated with the instantaneous magnitude tR(t),
can be modulated by flapping the robot’s right and left wings with
different amplitudes, i.e., ϕR(t) 6= ϕL(t), which are proportional to
αL(t) and αR(t), because as explained before, the mapping from
[νR(t) νL(t)]T to [ϕR(t) ϕL(t)]T is approximately LTI.

Finally in this section, we discuss the actuation method used to
generate and modulate pitch torques. As discussed in [3], a biased
flapping with respect to the x̂ axis, i.e., ϕBR(τ) = ϕBL(τ) > 0,
produces a sampled total average pitch torque tP 0, associated with
the instantaneous magnitude tP (t), about the pitch axis that allows
us to control the pitch angle. The reason for the generation of this
effect is that the trajectory of the center of force, in red in Fig. 4,
is rotated about the ẑ axis, so that, the center of motion of the
center of force, marked with a symbol ⊗ in Fig. 3, is shifted off
the x̂ axis. Once again, since the mapping from [νR(t) νL(t)]T to
[ϕR(t) ϕL(t)]T is approximately LTI, it follows that the sampled
biases ϕBR(t) and ϕBL(t) are proportional to βR(t) and βL(t),
as defined by (4) and (5), respectively.

B. Sensing

The feedback control strategy proposed in this paper is imple-
mented using the robot’s position and orientation, measured using
the Vicon motion capture system described in [3] and illustrated
in Fig. 5. The orientation of the robot with respect to a fixed
inertial frame is computed and then represented by the Euler angles
{θ1, θ2, θ3}, which correspond to three consecutive rotations about
the x̂ (pitch), ŷ (roll) and ẑ (yaw) axes fixed to the robot’s body.
Thus, using the standard notation Sk = sin θk and Ck = cos θk,

Case 1 Negative Pitch

Positive Velocity

Along the Roll Axis

Positive Velocity

Along the Roll Axis

Case 2 Positive Pitch

Negative Velocity

Along the Roll Axis

Case 4 Negative Pitch

Negative Velocity
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Case 3 Positive Pitch

Wing-Drag Force Adds

Corrective Moment

Wing-Drag Force Adds

Destabilizing Moment

Wing-Drag Force Adds

Destabilizing Moment
Wing-Drag Force Adds

Corrective Moment

Fig. 7. Four flying states (cases), defined with respect to the pitch angle
θPitch and the robot velocity along the roll axis ŷ, ~vRoll.
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Fig. 8. 3-D trajectory of the robot during controlled flight corresponding
to Experiment 1.
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Fig. 9. Frames from high-speed video of Experiment 1 are overlaid and
composited together to show the frontal view of the robot trajectory during
controlled flight. The complete experiment is shown in the supporting movie
available online through the website pointed by [18].

for k = 1, 2, 3, it follows that
0~p = R0←b

b~p, (14)
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Fig. 10. 3-D trajectory of the robot during controlled flight corresponding
to Experiment 2.
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Fig. 11. Frames from high-speed video of Experiment 2 are overlaid and
composited together to show the frontal view of the robot trajectory during
controlled flight. The complete experiment is shown in the supporting movie
available online through the website pointed by [18].

where 0~p is the vector ~p written with respect to the inertial frame{
X̂, Ŷ , Ẑ

}
, b~p is the same vector ~p written with respect to the

frame {x̂, ŷ, ẑ}, fixed to the robot’s body, and

R0←b =

[
C2C3 −S3C2 S2

S3C1 + S1S2C3 C1C3 − S1S2S3 −S1C2

S1S3 − S2C1C3 S1C3 + S2S3C1 C1C2

]
.

(15)

From this point onwards, the {i, j}-entry of R0←b will be denoted
by R(ij)

0←b. Notice that from definition (15) it follows that R−1
0←b =

RT0←b.
The feedback controller described in Section III, depicted in

Fig. 6, in the most general case, requires the computation of
the instantaneous pitch, roll, and yaw angles. The algorithm for
computing the pitch angle is as follows.
Algorithm 1.
(i) Find the plane that contains the pitch axis and is perpendicular

to the fixed inertial horizontal plane.
(ii) Find the plane that contains the pitch axis and the yaw axis.

(iii) Find the dihedral angle between the planes in (ii) and (iii).
To translate Algorithm 1 into a formula, first note that the axes of

the frame fixed to the robot’s body expressed in the inertial frame
are simply

0x̂ = R0←b
bx̂, 0ŷ = R0←b

bŷ, 0ẑ = R0←b
bẑ, (16)

where bx̂ = [ 1 0 0 ]T , bŷ = [ 0 1 0 ]T and bẑ =
[ 0 0 1 ]T . Recalling that the axes of the inertial frame written
with respect to the inertial frame are 0X̂ = [ 1 0 0 ]T , 0Ŷ =
[ 0 1 0 ]T and 0Ẑ = [ 0 0 1 ]T , it follows that a vector
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Fig. 12. Experiment 3 time-series of the robot’s degrees of freedom
during unconstrained controlled flight. The variables 0pz(t), θPitch(t)
and θRoll(t) are actively controlled, using direct references. The variables
0px(t) and 0py(t) are indirectly controlled by defining references for
θPitch(t) and θRoll(t). The variable θY aw(t) is not controlled and it
is allowed to drift freely.
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Fig. 13. 3-D trajectory of the robot during controlled flight corresponding
to Experiment 3.
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Fig. 14. Frames from high-speed video of Experiment 3 are overlaid and
composited together to show the frontal view of the robot trajectory during
controlled flight. The complete experiment is shown in the supporting movie
available online through the website pointed by [18].

perpendicular to the plane defined in (i), written with respect to
the inertial frame, can be computed as 0~n1 = 0x̂× 0Ẑ. Similarly,
it follows that a vector perpendicular to the plane defined in (ii),
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Fig. 15. Experiment 3 control signals β (upper left), α1 (middle left), and
α2 (lower left) modulate the pitch torque, roll torque, and lift generated by
the robot, respectively. These control signals are mapped to actuator input
signals for the right actuator (upper right plot) and left actuator (middle
right plot). A closeup of the left actuator input is shown in the lower right
plot. Notice that the inputs to each actuator are different, because the two
actuators are independent.

written with respect to the inertial frame, is 0~n2 = 0x̂× 0ẑ. Then,
it follows that the dihedral angle between the two planes defined in
items (i) and (ii) of Algorithm 1, the pitch angle, can be computed
as

θPitch =
[
sign

(
R

(32)
0←b

)] [
arccos

(
0~n1 · 0~n2

‖0~n1‖‖0~n2‖

)]
, (17)

where −π 6 θPitch 6 π.
A similar method to the one used to compute θPitch can be

employed to find the roll angle θRoll. Thus, after some algebraic
work it follows that

θRoll = −
[
sign

(
R

(31)
0←b

)] [
arccos

(
0~η1 · 0~η2

‖0~η1‖‖0~η2‖

)]
, (18)

where −π 6 θRoll 6 π, with 0~η1 = 0ŷ × 0Ẑ and 0~η2 = 0ŷ × 0ẑ.
Finally, using the same logic, the yaw angle θY aw can be

computed as

θY aw =
[
sign

(
R

(21)
0←b

)] [
arccos

(
0~ς1 · 0~ς2
‖0~ς1‖‖0~ς2‖

)]
, (19)

where −π 6 θY aw 6 π, with 0~ς1 = 0Ẑ × 0x̂ and 0~ς2 =0 Ŷ .

III. CONTROL STRATEGY

The main research issue addressed in this paper is the develop-
ment of a model-free tunable strategy for simultaneously controlling
the variables θPitch(t), θRoll(t) and 0pz(t), associated with the
prototype described in Section II, during unconstrained flight. In
principle, there are many options in order to create a control
strategy for achieving stable and autonomous flight of the robot. As
explained in Section II, here we directly modulate the controlled
variables by varying signals νR(t) and νL(t) as defined by (4) and
(5). With this purpose in mind, we define

β(t) = βR(t) = βL(t), (20)
αR(t) = αR0(t) + αR1(t) + αR2(t), (21)
αL(t) = αL0(t) + αL1(t) + αL2(t), (22)

and then we choose

α0(t) = αR0(t) = αL0(t), (23)
α1(t) = αR1(t) = −αL1(t), (24)
α2(t) = αR2(t) = αL2(t). (25)

Here, α0(t) is chosen to be a constant that generates a baseline
lift force. The variable β(t) is used to modulate θPitch, the variable

α1(t) is used to modulate θRoll(t) and the variable α2(t) is used to
modulate the altitude 0pz(t). Thus, as described in Fig. 6, the two
relevant vectorial signals in the control problem considered here are
chosen to be

uB(t) =

[
β(t)
α1(t)
α2(t)

]
, yB(t) =

 θ̃Pitch(t)
θ̃Roll(t)
0p̃z(t)

 , (26)

where the tilde symbols employed in the definition of yB(t) are
used to emphasize the fact that yB(t) emerges from an estimation
process (using the Vicon motion capture system described in the
previous subsection), and consequently, each entry of yB(t) is the
sum of the true value of a variable (θPitch(t), θRoll(t) or 0pz(t))
and sensor noise. Recalling that due to physical constraints on the
manner in which the actuators should be excited, the exciting signals
must satisfy that −1 6 νR(t) 6 1 and −1 6 νL(t) 6 1, and
therefore, it follows that

0 6 αR(t) + βR(t) 6 1, (27)
0 6 αL(t) + βL(t) 6 1, (28)

which implies that β(t), α1(t) and α2(t) must meet strict saturation
limits.

The approach proposed in this work for finding an experimentally
feasible and stable controller is very intuitive and based on the
idea illustrated in Fig. 7. Here, it is easy to see that if we
assume a perfectly symmetric aerodynamic design and the absence
of fabrication errors, a simple experimentally-tuned MIMO LTI
controller with the form

uB(t) = [C(z)eB ] (t) = [C(z) (ryB − yB)] (t) (29)

and an appropriate reference ryB can be used to compensate for
deviations from a desired vertical path. In the work presented in
this paper, C(z) is a diagonal transfer matrix with the diagonal
labeled as

{
CPitch(z), CRoll(z), C0pz (z)

}
. In general, the control

strategy in (29) is insufficient, from a stability perspective, in order
to deal with asymmetries produced by small fabrication errors and
with strong external disturbances, such as wind gushes, for example.
In this paper, we propose a combined robustly stable strategy that
includes the operator defined by (29) and another component that
processes the information associated with the robot’s velocities
along the 0x̂ and 0ŷ axes. This information is relevant because
it relates to the restoring forces acting on the robot while flying
horizontally. Furthermore, we experimentally demonstrate that the
same proposed control method can be used for hovering and for
implementing basic flying maneuvers. Note that, as shown in [4],
the entry C0pz (z) is enough to control altitude.

The main control idea here, that follows from Fig. 7, consists
of adding four decoupled filters to the general control scheme. The
first two filters take the velocity and position of the robot along
the roll axis, 0ŷ, as inputs and deliver outputs that are added to
the total actuation β(t), which allows us to robustly stabilize the
pitch-angle degree of freedom. The additional two filters take the
velocity and position of the robot along the pitch axis, 0x̂, as inputs
and deliver outputs that are added to the total actuation α1(t), which
allows us to robustly stabilize the roll-angle degree of freedom. It is
important to note that with the appropriate tuning of these filters, the
position of the robot on the X̂Ŷ plane can be controlled. The robot’s
position

{
0px(t),0 py(t),0 pz(t)

}
is estimated using the previously

described Vicon motion capture system. The velocity of the robot
with respect to the inertial frame

{
X̂, Ŷ , Ẑ

}
is simply calculated

as

0~vp =

 0ṽpx(t)
0ṽpy (t)
0ṽpz (t)

 =


0p̃x(t)−0p̃x(t−1)

Ts
0p̃y(t)−0p̃y(t−1)

Ts
0p̃z(t)−0p̃z(t−1)

Ts

 , (30)

where Ts is the sampling rate already defined.
First, we describe the method for finding the filter that maps the

velocity of the robot along the roll axis to the output that is added



to the total actuation β(t). The robot’s velocity and position along
the roll axis are given by

0~vroll(t) =
[0~vp(t) · 0ŷ(t)

] 0ŷ(t), (31)
0~proll(t) =

[0~p(t) · 0ŷ(t)
] 0ŷ(t), (32)

where, as defined before, 0ŷ(t) = R0←b
bŷ(t).

The idea of using 0~vroll(t) in the computation of the control
signal β(t) follows from the cartoon in Fig. 7. This cartoon shows
the four relevant cases (flying states) that should be considered in
order to robustly stabilize the pitch-angle of the robot during flight.
The main notion behind the definition of different cases is that
restoring forces play a relevant role when the stability of the flying
robot is considered. To see this, assume without loss of generality
that the pitch angles depicted in Case 1 and Case 4 in Fig. 7 are
identical and that the magnitudes of the robot’s velocities along
the roll axis are also identical in both cases. The main difference
between Case 1 and Case 4 is that in Case 1 the interaction of the
robot with the air produces a restoring force that adds a corrective
pitch moment and that in Case 4 the interaction of the robot with
the air produces a force that adds a destabilizing pitch moment.
This tells us that a successful and robust control strategy must add
a term to the left side of (29) in order to account for the different
amount of actuation required in Case 4 with respect to Case 1.

Now, let us consider Cases 2 and 3. Analogous to Cases 4 and 1
(with negative pitch angles), in Cases 2 and 3 the pitch angle,
θPitch, is positive and without loss of generality, it is assumed
that the magnitude of the pitch angle in Case 2 is identical to the
pitch angle in Case 3. In Case 2, the robot’s velocity along the roll
axis is positive, which implies that wing drag adds a destabilizing
pitch moment. In Case 3, the robot’s velocity along the roll axis
is negative, which implies that wing drag adds a corrective pitch
moment. Thus, as argued in the previous paragraph, a new term
must be added to the left side of (29) in order to account for the
different amount of actuation required in Case 3 with respect to
Case 2.

Thus, as a design choice, for the pitch angle degree of freedom,
we propose a control structure with the form

β(t) = CPitch(z)
[
rθPitch(t)− θ̃Pitch(t)

]
− sign

[0~vp(t) · 0ŷ(t)
]
VPitch(z)

[∣∣0~vRoll(t)∣∣] , (33)

which allows us to tune a robustly stable controller for the first
entry of the MIMO strategy depicted in Fig. 6.

The analysis done for the pitch case can be replicated for the
roll case. Thus, for the roll angle degree of freedom, we propose a
control structure with the form

α1(t) = CRoll(z)
[
rθRoll(t)− θ̃Roll(t)

]
− sign

[0~vp(t) · 0x̂(t)
]
VRoll(z)

[∣∣0~vPitch(t)
∣∣] , (34)

where
0~vPitch(t) =

[0~vp(t) · 0x̂(t)
] 0x̂(t). (35)

As we demonstrate in Section IV, the control strategy in (33) and
(34) allows us to stabilize the pitch angle and roll angle degrees
of freedom, so that, the robot achieves unconstrained flight and
autonomy from a control point of view. Thus, in theory, the robot
could flight indefinitely. The main limitations of this approach is
that there is not a direct way to set a reference for the position of
the robot over the X̂Ŷ plane and that the robot displays a tendency
to drift, because the method as proposed in (33) and (34) allows for
the robot to move laterally in order to reject random disturbances
that might affect the pitch angle or roll angle degrees of freedom.
Another limitation, contingent to the experimental setup employed
in this work, is that when the robot drifts, it can fly outside the
control volume generated by the Vicon motion capture system,
described in Section II and illustrated in Fig. 5. Also, in this setup,
the mobility of the robot is limited by the power wire (recall that
the robot is not autonomous from a power point of view).

In order to deal with the limitations described in the previous
paragraph, we modify the control strategy defined by (33) and (34)

as follows

β(t) = CPitch(z)
[
rθPitch(t)− θ̃Pitch(t)

]
− sign

[0~vp(t) · 0ŷ(t)
]
VPitch(z)

[∣∣0~vRoll(t)∣∣− r|0~vRoll(t)|
]

− sign
[0~p(t) · 0ŷ(t)

]
PPitch(z)

[∣∣0~pRoll(t)∣∣− r|0~pRoll(t)|
]

(36)

and

α1(t) = CRoll(z)
[
rθRoll(t)− θ̃Roll(t)

]
− sign

[0~vp(t) · 0x̂(t)
]
VRoll(z)

[∣∣0~vPitch(t)
∣∣− r|0~vPitch(t)|

]
− sign

[0~p(t) · 0x̂(t)
]
PRoll(z)

[∣∣0~pPitch(t)
∣∣− r|0~pPitch(t)|

]
,

(37)

where,
0~pPitch(t) =

[0~p(t) · 0x̂(t)
] 0x̂(t). (38)

The logic behind this modified structure is that filters VPitch(z)
and VRoll(z), which are LTI, can be chosen to have a proportional-
integral-derivative (PID) form, which implies that another interpre-
tation of the laws in (33) and (34) is that the second term in (33)
and the second term in (34) minimize the magnitudes of 0~vRoll(t)
and 0~vPitch(t), so that in steady state, velocities equal to 0 are
achieved along the roll and pitch axes, respectively. Thus, the same
filters VPitch(z) and VRoll(z) can be used to minimize an error and
follow a reference, as is done in the second terms of (36) and (37).
Similarly, using the third terms of (36) and (37), the position of the
robot on the X̂Ŷ can be controlled. In this case, the structures of
filters PPitch(z) and PRoll(z) are also PID.

IV. EXPERIMENTAL RESULTS AND DISCUSSION

In this section, we present three representative experimental
cases that demonstrate the most relevant aspects of the model-
free control strategy proposed in this paper. In the course of the
research discussed here, the first set of experiments conducted were
attempts of open-loop unconstrained flight, which as expected, did
not succeed because the MIMO open-loop plant of the system is
unstable. A representative experiment of open-loop flight, labeled
as Experiment 0, is shown in the accompanying video [18], where
it can be seen that the robot lifts off but topples over almost
immediately.

Experiment 1 shows a stable flight employing the method in (33)
and (34), which uses VPitch(z) and VRoll(z) to filter the robot’s
velocities along the roll and pitch axes, respectively in order to
achieve robust stability. As previously explained, VPitch(z) and
VRoll(z) were developed based on the idea described in Fig. 7.
The results for Experiment 1 are summarized by a plot of the 3-
D trajectory in Fig. 8 and a composite image showing frames of
a frontal view taken with a high speed camera shown in Fig. 9.
The controller used in Experiment 1 was repeatedly tested and
consistently was demonstrated capable of achieving robust stability
in the sense that the robot was capable of flying oriented upright
and not toppling over, even in the presence of strong disturbances.
In Figs. 8 and 9, it can be seen that the robot drifts from its
starting position on the horizontal plane, so that, once the robot
leaves the tracking volume, the experiment ends. We think that this
drifting behavior is partially due to the effect of the velocity filters,
VPitch(z) and VRoll(z), which during the transient time help to
stabilize orientation, but potentially add lateral velocity resulting in
drift.

In Experiment 2, the robot flies employing the control laws in
(36) and (37), which address the drift issue observed in Experi-
ment 1 by adding a correction for position on the horizontal plane,
using the position filters PPitch(z) and PRoll(z). The results for
Experiment 2 are summarized by a plot of the 3-D trajectory in
Fig. 10 and a composite image showing frames of a frontal view
taken with a high speed camera shown in Fig. 11. These two figures
demonstrate that the control laws in (36) and (37) make the system
robustly stable in the sense that the robot flies oriented upright,
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Fig. 16. Photographic sequence showing a controlled flight of the robot, corresponding to Experiment 3 described in Figs. 12, 13, 14 and 15. The complete
experiment is shown in the supporting movie available online through the website pointed by [18].

even in the presence of strong disturbances. Simultaneously, the
control laws in (36) and (37) correct for and eliminate the drifting
phenomenon observed in Experiment 1, such that, the robot flies
straight up. The controller used in Experiment 2 was repeatedly
tested and consistently proved capable of achieving stable straight
vertical flight for the robot. In this kind of experiment, once the
robot leaves from the top the tracking volume, the experiment ends.

Finally, Experiment 3 shows hovering and trajectory following.
In this case, we use the same strategy in (36) and (37) for stabilizing
the system and controlling position on the X̂Ŷ plane. But, simul-
taneously we control altitude by choosing a finite reference for this
degree of freedom (15 cm in this case). In Fig. 12, we show all the
relevant degrees of freedom of the robot while flying. As explained
in Section III, 0pz(t), θPitch(t) and θRoll(t) are directly controlled,
in this case with references 15 cm, 0 rad and 0 rad. The variables
0px(t) and 0py(t) are indirectly controlled using the second and
third terms of the control laws in (36) and (37), in this case with
references 0 cm and 0 cm. The variable θY aw(t) is not controlled
and it is allowed to drift freely. Fig. 13 shows the 3-D trajectory
of the robot while flying, and a composite image, formed with the
frames of a frontal view taken with a high speed camera, is shown in
Fig. 14. The relevant control outputs are shown in Fig. 15. Lastly, a
photographic sequence showing the robot’s position and orientation
through time is shown in Fig. 16. Figs. 12, 13, 14, 15, and 16
present solid, compelling and comprehensive evidence that the robot
remains stable and hovers around the reference position for six
seconds. A movie with all the cases discussed in this section is
available online [18].

V. CONCLUSION

We have described the development of a model-free controller for
achieving stable autonomous flight and hovering of an insect-scale
flapping-wing flying microrobot. By experimentally identifying and
tuning key parameters affecting flight stability a relatively simple
MIMO controller resulted, where each term of the controller had a
known physically intuitive meaning. To accomplish stable straight
vertical flight, controlling pitch and roll directly was not sufficient,
and therefore, additional terms were necessary to account for the
asymmetric nature of the wing drag force affect on pitch and roll
moments. Stable hover was then achieved by adding direct altitude
control and indirect position control. While the final experiments
demonstrated a long and stable flight, a future model-based con-
troller, based on system identification techniques, could offer better
flight performance. The advantage of the model-free method used
here is that it could potentially be easily applied to other, similar
designs and prototypes and is an essential step towards the design
of a future model-based control strategy.
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