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ABSTRACT
This paper presents the design and experimental implemen-

tation of an adaptive inverse control system for a two axis MEMS
tilting mirror used for optical beam steering. The theoretical is-
sues and practical design considerations involved in this task are
discussed in detail. The first topic addressed is the system iden-
tification of input-output and state-space models of the MEMS
mirror. Consistency among the following two system identi-
fication methods is verified: identification of a parameterized
transfer function and identification of a state-space model by a
subspace method. Next, a stabilizing feedback controller and an
adaptive inverse control scheme based on an adaptive inverse QR
recursive least-squares filter are developed. Finally, the experi-
mental implementation of the control loops is described and the
performance of the beam steering system is analyzed.

1 INTRODUCTION
Laser beam steering has a wide range of applications in

fields such as adaptive optics, wireless communications or manu-
facturing process. The control problem is to position the centroid
of a laser beam at a desired location on a target with minimal
beam jitter in the presence of disturbances. In engineering appli-
cations, the necessity for a control system arises because targets
usually move, light traveling through the atmosphere is affected
by turbulence, and the laser source often is subjected to vibration.

This work consists of creating an experiment that allows us
to implement a solution based on an adaptive scheme. As it was

§THIS RESEARCH WAS SUPPORTED BY AFOSR GRANT F49620-02-
01-0319

mentioned earlier, the optic path is under continuous changes in
its own dynamics and in the type of disturbance that affects it.
Therefore, it is natural to think of a control system that can adapt
on time. Among the many possible adaptive control schemes, in
this experiment, a so-called adaptive inverse controller [1,2] was
developed based on the inverse QR-RLS to achieve fast conver-
gence to optimal gains [15–19].

This paper is organized as follows: In section 2, the experi-
ment is described making clear which are the components of the
physical implementation and the role that each of this compo-
nents play in the plant and control systems. In section 3, a system
identification is performed using two independent system iden-
tification techniques in order to have a reliable plant model. In
section 4, the adaptive control is developed and tested. Finally in
section 5, the conclusions of this work are given. A novel tech-
nical feature of this implementation is that MEMS mirrors are
utilized, making possible to have a first practical insight of the
capabilities of this arising technology.

2 SYSTEM DESCRIPTION
From a physical viewpoint, this experimental setup was built

as a path for a laser beam which travels from point 1 to point 4 in
Fig. 1. At point 1 the laser beam is generated. Point 2 marks the
position of the first MEMS mirror which changes the direction
of the laser beam towards point 3, where a second MEMS mir-
ror changes the direction of the beam towards point 4. At point
4 a position sensor device (PSD) was allocated. The same type
of mirror is used at point 2 and at point 3. These mirrors are
able to rotate with respect to two orthogonal axis of reference,
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Figure 1. Physical scheme.

which in the context of this paper are labeled as the h°axis and
the v° axis. Internally the actuation in each axis is realized by
two electromagnetic fields with opposing directions created by
two coils. The coils are fed using currents of equal magnitude
flowing in opposite ways. Nominally the rotation range is ±5
Degrees, values that are experimentally achieved with a voltage
range of approximately ±1.7 Volts. The reflecting area of the
mirrors is 9mm2. The position sensor device (PSD) allocated at
the end of the beam path measures the position of the laser beam
centriod. In general the PSD is an optoelectronic device that
captures the light intensity distribution, generating current out-
put signals, that are converted to voltage and amplified by an
operational-amplifier/feedback circuit. Further electronic pro-
cessing of these voltage signals yields two final signals, which
are the estimates of the centroid coordinates.

From a control point of view this system is composed fun-
damentally by four subsystems: the digital controller, the ac-
tuator, the sensor (PSD) and the disturbance generator. The
controller is implemented using C with single precision floating
point arithmetic in a digital signal processor (DSP). The sam-
pling frequency was set at 2 KHz. The control system consists of
two subsystems, a stabilizing feedback control and a so-called in-
verse control [1,2] adapted every step using the inverse QR-RLS
algorithm. Given that the controller is digital, all the analysis
from this point onwards is done in the discrete-time domain and
the MIMO plant P(z) has its input signal u at point 6 and it has
its output signal y at point 5. As shown in Fig. 1 the interface

between the discrete-time computer and the analog system to be
controlled is done by an A/D-D/A board. Fig. 2 shows a picture
of the mirrors used for controlling and for generating disturbance
in the experimental setup.

Figure 2. MEMS mirrors view.

3 SYSTEM IDENTIFICATION
Most adaptive control schemes use a plant model as a funda-

mental part of the adaptive controller. Therefore the control per-
formance and the closed loop stability will be limited by the ac-
curacy of this plant model. Considering that there are many phys-
ical parameters that are difficult to measure, the obvious choice
is to find an identified model for the mentioned plant. In order
to find a reliable model, two independent identification methods
are employed. First, a parametric identification is performed and
next, a subspace algorithm is used. In the parametric search an
ARX dynamics is proposed and the parameters for it are found
by means of the solution to the classical least-squares problem.
This model description has the advantage of being very simple
and furthermore is intuitively consistent with the idea of a dis-
crete transfer function in the SISO case, however the order of
the system has to be assumed. One way to overcome this prob-
lem is to write a state-space representation and then, to use the
well known technique of model reduction based on a balanced
truncation [3–5]. Using this empirical. example it is possible
to appreciate the principal advantage of the subspace techniques
for which there is no need for assuming, a priori, the order of the
identified system or the structure of a transfer function, since it
yields a space-state representation immediately.
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3.1 Parametric Identification of a Transfer Function
In general, parametric identification methods assume that

the dynamics of the system to be identified can be captured by
a difference equation and the goal is to estimate the unknown
coefficients of it. The order and form of the equation has to be
assumed a priori. In this case an ARX [8] structure

yk =°
n

∑
i=1

yk°iAi+
n

∑
i=0

uk°iBi, k = 0,1,2, ... (1)

was chosen, where the output sequence yk and the in-
put sequence uk could be either scalars or row vec-
tors. It is clear that (1) and yk = φkθ are equivalent,
where φk = (°yk°1 ... °yk°n uk ... uk°n ) and θT =
(AT1 AT2 ... ATn BT0 BT1 ... BTn ). Thus, we can for-
mulate the multiple-input/multuple-output least-squares (MIMO-
LS) problem

min
θ
kYN°ΦNθkF , (2)

where k·kF denotes the matrix Frobenius norm. It is straightfor-
ward to show that the solution to (2) is

θ̂=Φ+
NYN , (3)

where Φ+
N is the pseudoinverse of ΦN [13–15],

YTN = (yTo yT1 . . . yTN ) , ΦT
N = (φTo φT1 . . . φTN ) and

N is the number of times the system is sampled. In this case,
it is clear that θ̂ is unique and (3) holds, since in practical
applications N has magnitude of various thousands and the input
data to the physical system is chosen to be white noise.

3.2 Subspace State-Space System Identification
The subspace methods for identification of dynamical sys-

tems intend to find matrices A, B, C and D for a state-space real-
ization

xk+1 = Axk +Buk

yk =Cxk +Duk
, (4)

through solving two consecutive problems. First an observability
matrix

OCA =

0

BB@

C
CA
...

CAM°1

1

CCA (5)

is found, where M is a positive integer larger than n =
number o f states. Next, matrices A, C, B and D are computed
based on the information contained in OCA.

During the last decade many works expanded on this topic
and an unified theoretical solution was published [9]. However,
in this case, following some simple key ideas [10, 11] it is pos-
sible to find a state-space realization which is consistent with the
previous parametric solution.

There exist two principal reasons for using a subspace algo-
rithm. The first is that there is no need for assuming a priori the
order of the system to be identified and the second is that this
technique is indifferent to the number of inputs and outputs, thus
to have a MIMO system is no longer an issue.

To begin, notice that yk =CAkx0+∑k°1i=0 CA
iBui+Duk is the

solution to (4) and therefore it is possible to write

Y = OCAX+HU , (6)

where

Y =

0

BB@

y0 y1 ... yN°1
y1 y2 ... yN
...

... ...
...

yM°1 yM ... yM+N°2

1

CCA, (7)

X = (x0 x1 ... xN°1 ), (8)

H =

0

BBBB@

D 0 ... ... ... 0
CB D 0 ... ... 0
CAB CB D ... ... 0
...

...
...

...
...

...
CAM°2B CAM°3B ... ... CB D

1

CCCCA
, (9)

which is referenced sometimes as the impulse response matrix of
the system. And

U =

0

BB@

u0 u1 ... uN°1
u1 u2 ... uN
...

... ...
...

uM°1 uM ... uM+N°2

1

CCA , (10)

with N+M° 2 = number o f times the system is sampled. In
general N¿M and N ª= number o f samples.
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On the other hand, after computing its singular value decom-
position (SVD), the matrixU can be expanded as

U = PU (ΣU 0)QT
U = PU (ΣU 0)

µ
QT
U1

QT
U2

∂
. (11)

The form of matrices PU , ΣU and QU in (11) comes from the
facts that N >> M and that in practice the sequence input uk is
chosen to be white noise, therefore it is reasonable to consider
that rank(U) = M. Additionally, from standard SVD properties
[12], it follows that QU is orthogonal. Thus QT

U1QU2 = 0, and

YQU2 = OCAXQU2 (12)

Some authors regard matrices playing the function of QU2 as
annihilators, since they allows us to isolate the relevant matrices
by eliminating from the original expression what is not needed.

From (12), it follows that the columns of the matrix
YQU2 are linear combinations of the observability matrix OCA.
Then the columns of the matrix YQU2 span a linear subspace
which is contained in the subspace spanned by the columns of
OCA. Therefore if YQU2 and OCA have the same rank, then
their columns span the same subspace, i.e., range(YQU2) =
range(OCA).

In this way the task can be reduced to finding a set of lin-
early independent vectors that span the subspace of the columns
of YQU2 . Fortunately there exist a well known linear algebra the-
orem that allows this to be done.

Theorem 1: Let P, Σ and Q be matrices such that the SVD
decomposition for a generic matrix Ψ 2ℜm£n is

Ψ= PΣQT

= ( p1 . . . pr . . . pm )

0

BBB@

σ1 0
. . . 0

0 σr
0 0

1

CCCA
QT

(13)

and let σ1, ...,σr be the nonzero singular values of Ψ, then:

1. rank(Ψ) = r.
2. {p1, . . . , pr} is an unitary basis for the linear subspace
spanned by the columns of Ψ.

3. {pr+1, . . . , pm} is an unitary basis for the orthogonal com-
plement of the subspace spanned by the columns of Ψ.

Proof: See [12].

Consequently, Ψ= YQU2 can be decomposed as

Ψ= PΨ
µ
ΣΨ 0
0 0

∂
QT
Ψ = (PΨ1 PΨ2 )

µ
ΣΨ 0
0 0

∂µ
QT
Ψ1

QT
Ψ2

∂

(14)
and applying property 2 of Theorem 1 it is possible to conclude
that the matrix PΨ1 is actually an observability matrix for some
state-space realization which is related for a similarity transfor-
mation to the system (4), i.e., PΨ1 =OCAT°1. is an observability
matrix for the system given by Ã = TAT°1, B̃ = TB, C̃ =CT°1
and D̃= D, where T is assumed to be a full rank matrix.

A fundamental result from Linear System Theory assures us
that, a linear system can be represented by infinity many state-
space realizations [4–7]. Nevertheless, these realizations are re-
lated by the similarity transformations, and equally important,
the input-output relationship is unique. Thus, from here onwards
it is possible to consider OCA = PΨ1 .

At this point, what is left is to compute matrices for (4) us-
ing the information contained in OCA. In order to do that let us
consider the following relations [11]:

E0 =

0

BB@

C
CA
...

CAM°2

1

CCA , E1 =

0

BB@

CA
CA2
...

CAM°1

1

CCA . (15)

From (15) it is obvious that

E1 = E0A, (16)

which in this case is solved for A multiplying (16) by E+
0 , i.e.,

A= E+
0 E1, where E

+
0 is the pseudoinverse of E0 [12–14]. At the

same time it is clear that C is equal to the first no rows of the
matrix E0, where no is the number of the outputs of the system to
be identified. It is important to notice that (14) gives us the order
of the system being identified.

Once matrices A and C have been found, the last task is to
look for the matrices B and D. In some sense it is surprising that
this could be achieved using the collection of inputs and outputs
and the observability matrix of this system. To accomplish this,
the key idea is to isolate the matrix H in (6) using the proper
annihilator.

From property 3 of Theorem 1 it is clear that the subspace
which the columns of PΨ2 span is orthogonal to the subspace
that the columns of YQU2 span. At the same time from (12) it
is known that the columns of YQU2 are linear combinations of
the columns of OCA, and recalling that T was assumed to be a
full rank matrix, it is possible to conclude that PTΨ2OCA = 0, thus
the desired annihilator is PTΨ2 . Consequently premultiplying the
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equation (6) by PTΨ2 and postmultiplying by U
+, it is possible to

see that

PTΨ2YU
+ = PTΨ2H. (17)

Now, we define KDB = PTΨ2YU
+ and we partition KDB and PTΨ2

in M blocks of equal size, i.e., KDB = (K1 K2 . . . KM ) and
PTΨ2 = (P1 P2 . . . PM ) [11]. This allows us to write

(K1 K2 ... KM ) = (P1 P2 ... PM )

·

0

BBBB@

D 0 ... ... ... 0
CB D 0 ... ... 0
CAB CB D ... ... 0
...

...
...

...
...

...
CAM°2B CAM°3B ... ... CB D

1

CCCCA
.

(18)

Furthermore,

0

BB@

K1
K2
...
KM

1

CCA =

0

BBBBBB@

P1 P2 P3 ... ... PM
P2 P3 ... ... PM 0
P3 P4 ... ... ... 0
...

...
...

...
...

...
PM°1 PM 0 ... ... 0
PM 0 ... ... ... 0

1

CCCCCCA

·
µ
I 0
0 E0

∂µ
D
B

∂
.

(19)

In this way a relationship that permits us to solve for B andD
has been found. It is clear that in order to have a unique solution,
M has to be chosen large enough. In this work, this problem was
solved using the least-squares (LS) solution.

3.3 Model Reduction
For the case when using a parametric identification, once a

state-space model has been found, it is desired to have a minimal
realization [4–7], which by definition is a realization that is both
controllable and observable. In reality the identified realizations
are going to be minimal, nevertheless one can think intuitively
of states that are more observable than others and states that are
more controllable than others. Thus, the idea would be to elim-
inate the states that are both comparatively not very observable
and not very controllable at the same time. Unfortunately, it is
known that the so-called controllability and observability ellip-
soids in general are not aligned [4]. From linear system theory
it is well known that a way to see how controllable a system
is, is to look at the discrete time controllability gramian defined
as WC = CABCTAB, with CAB being the controllability matrix of

the system defined as CAB = (B AB A2B ... An°1B) and
with n = numbero f states. From the definition it is easy to see
that WC is a nonnegative definite matrix and that range(WC) =
range(CAB).

Additionally it can be shown that if A is stable then WC
solves WC ° AWCAT = BBT and the pair (A,B) is controllable
if and only ifWC is positive definite (WC > 0 ). Furthermore the
eigenvalues ofW 1/2

C , defined as in [4], are a measure of the con-
trollability of their corresponding state (unit-norm eigenvector).
In other words if a state has a corresponding comparatively small
eigenvalue with respect to the others, then this state is compara-
tively less controllable [4].

Similarly, the observability gramian is defined as WO =
OT
CAOCA, which in the case that A is stable, solves the equation

WO°ATWOA=CTC and the pair (C,A) is observable if an only
ifWO is positive definite (WO > 0). Analogous to the controllabil-
ity case, each eigenvalue ofW 1/2

O , defined as in [4], is a measure
of the observability of its corresponding state.

A realization is called balanced if its controllability and ob-
servability gramians are diagonal and equal and therefore the
controllability and observability ellipsoids are aligned. Under the
assumption that the matrix A is stable, the theoretical and com-
putational issues for finding a balanced realization were solved
during the eighties [3] for the continuous time case. Neverthe-
less as it is noted in [3], the continuous time method applies to
the discrete time case, keeping in mind the intrinsic differences
between discrete and continuous time systems; for instance the
differences in the Lyapunov equations that their gramians solve.

This method can be applied to either case, because it is based
on a so called congruence transformation such that

TWCTT = T°TWOT°1 = Σ

(Ã, B̃,C̃, D̃) = (TAT°1,TB,CT°1,D)
(20)

where T is a nonsingular matrix and where Σ is a diagonal posi-
tive definite matrix if (A,B,C) is both controllable and observ-
able or where Σ is a diagonal semipositive definite matrix if
(A,B,C) is not both controllable and observable. The eigenval-
ues of Σ are ordered in a decreasing manner.

It is interesting to note that the previous transformation is
possible because the eigenvalues of the system matrix, A, are
invariant under similarity transformation, but on the other hand
the eigenvalues of the gramians are not. For rigorous technical
details see [4] and for algorithm implementation see [3].

Once the balanced realization has been obtained, arbitrarily
the states corresponding to comparatively small singular values
are discharged. This process is called balanced truncation. In
general a way to see the effect of this truncation is to compare
the frequency responses of the original and the truncated system.
There are some works that support technically the validness of
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this algorithm for the continuous formulation [4]. In this case
it was used in a discrete time case and empirically it worked as
desired.

In theory model reduction is not needed if using a subspace
algorithm, nevertheless in practice the last element of the matrix
ΣΨ is always a very small number but larger than zero. Thus,
one option could be to get a system of order M and after to re-
alize a balanced truncation. In this case, the identification of the
order was performed during the computing process by including
a function able to notice jumps in the elements of ΣΨ.

3.4 Computing the Plant Model
In this section the task of finding a model for the open-loop

plant is discussed. Both axis are considered as SISO systems
that are labeled as P1(z) in the h°axis case, and as P2(z) in the
v° axis case. In the parametric identification of both axis, the
ARX model was considered as having order 96 and the input
data and output data sequences were sampled 20,000 times each.
Next, state-space realizations were computed. For the subspace
identification of both axis, the corresponding constants were set
as M = 96 and N = 12,000.

The resulting balanced realizations obtained using the para-
metric method showed clearly, for both axis that a good model
would be of order 2, since for the the v° axis case, the third
diagonal element of the WO =WC matrix was more than a hun-
dred times smaller than the second diagonal element. At the
same time for the h° axis case, the third diagonal element
of the WO = WC matrix was more than a hundred and a half
times smaller than the second diagonal element. In the case
of the subspace identification, (14) gives us the order of the
system being identified, since there exists a clear jump in the
magnitude of the diagonal elements of the matrix ΣΨ. This
yield the following state-space models: (ASS1 ,BSS1 ,CSS1 ,DSS1 ,),
which is the model for P1(z) using the subspace algorithm,
(AARX1 ,BARX1 ,CARX1 ,DARX1 ,), which is the model for P1(z) us-
ing the parametric method, (ASS2 ,BSS2 ,CSS2 ,DSS2 ,), which is
the model for P2(z) using the subspace algorithm and finally
(AARX2 ,BARX2 ,CARX2 ,DARX2 ,), which is the model for P2(z) us-
ing the parametric method. The identified models are:

µ
ASS1 BSS1
CSS1 DSS1

∂
=

0

@
0.9227 0.3907 °0.5205
°0.3824 0.9198 °3.2368
°0.1234 0.0452 0.0281

1

A

µ
AARX1 BARX1
CARX1 DARX1

∂
=

0

@
0.9217 °0.3867 °0.4052
0.3867 0.9204 0.5238
°0.4052 °0.5238 °0.0002934

1

A

µ
ASS2 BSS2
CSS2 DSS2

∂
=

0

@
0.9296 0.3622 0.3848
°0.3622 0.9248 0.4581
0.3848 °0.4581 0.0041

1

A

µ
AARX2 BARX2
CARX2 DARX2

∂
=

0

@
0.9229 °0.3631 °0.3945
0.3631 0.9225 0.4986
°0.3945 °0.4986 0.00002407

1

A

Figures 3 and 4 show the consistency between the two inde-
pendent identification methods utilized in this work. The vali-
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Figure 3. Bode plot of P1(z).
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dation of the identified model was done comparing the physical
output of the system with the simulated output of the identified
model using a random sequence as input. Not surprisingly for
both axis the match is almost perfect. These results are shown
in Fig. 5. This plot shows a small time windows, otherwise no
difference between both signals could be appreciate.
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Figure 5. Model validation.

4 ADAPTIVE CONTROL IMPLEMENTATION
This section is based on the idea of adaptive inverse control

(AIC) [1,2]. The approach comes from applications on signal
processing systems used for noise canceling and in principle in-
tends to find a transfer function F(z) such that it is the inverse
transfer function for the plant system G(z). This idea appears
naive and of course, in general it is not possible to find a causal
function F(z) in the whole range of frequencies, nevertheless em-
pirically it has been seen that this goal is achievable in a limited
range of frequencies which is reasonable in many applications
with limited bandwidth disturbance.

Having the previous statements in mind, the scheme in Fig.
6 is proposed. In this scheme G(z) is the closed loop plant which
has already a stabilizing feedback control incorporated. P(z) is
the open loop plant of the system,C(z) is the stabilizing feedback
control and Ĝ(z) is the a closed loop plant model identified off
line.

In every step an estimate ŵ for the disturbance is computed
based on a model of the closed loop plant. For purposes of anal-
ysis consider for now that the reference is set rk = 0, 8 k, thus
once ŵ is obtained, it is filtered through F(z). Then, ideally the
output in F(z) is the required input in G(z) such that the output
in G(z) is vk = °ŵk. Therefore, if vk is almost equal to the dis-

Closed loop plant�

)�(�z�G�

Closed loop plant model�

)�(�ˆ� z�G�

+�

+�

Copy estimated filter�

)�(�z�F�

output �
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e�Disturbanc�

u� v�

Closed loop plant model� Estimated filter�

)�(�z�F�)�(�ˆ� z�G� z�

1�
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1�

Adaptive algorithm for�
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)�(�z�F�

-�

+�
Error�

)�(�z�P�)�(�z�C�

)�(�z�G�

m�

r�

w�ˆ�

w�

y�

Figure 6. Adaptive inverse control scheme.

turbance wk, then the control error is close to 0 and the noise is
canceled.

At this point there are some issues to be mentioned. First, it
is evident that this noise canceling scheme could not work if the
disturbance has components of high frequency, i.e., close to the
Nyquist frequency. Second, stability and the performance of this
control scheme is limited by the accuracy of Ĝ(z), and third, per-
formance and stability of the whole system will depend on F(z).
F(z) is chosen to be a finite impulse response filter (FIR) princi-
pally for stability reasons, since FIR filters are always stable.

Arguments about stability are described in [1,2] reasoning
that the transfer function H(z) = Y (z)

R(z) is

H(z) =
G(z)

1+ z°1G(z)Fk(z)° z°1Ĝ(z)Fk(z)
, (21)

where the subindex k means that the filter F(z) is updated every
step.

Looking at (21) it is possible to notice that when Ĝ(z) =
G(z) the plant dynamics remains unchanged, i.e., H(z) = G(z).
Therefore, since the closed loop plant G(z) is stable then H(z)
is stable as well. Thus, heuristically it can be said that if the
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dynamics of Ĝ(z) is close to the dynamics of G(z), H(z) will
remain stable. Otherwise, there exist coefficients of F(z) that
makesH(z) unstable. A more rigorous analysis will be attempted
in future works. For further arguments on stability and optimality
see [1,2].

In general F(z) can be computed in three ways. This can be
done off-line, in which case the control scheme could be called
inverse but not adaptive. A second way is implementing a so-
called pseudo adaptive inverse control where F(z) is compute on
line by solving a typical least-squares problem storing several
thousands of points [20]. Third, this scheme can be implemented
solving a least-squares problem in a recursive manner (RLS), in
which the coefficients for F(z) are computed in every step. This
last way was chosen for this work, solving the RLS problem using
the algorithm called inverse QR-RLS [15–19]. A future publica-
tion will show a solution using a more efficient algorithm with a
lattice filter structure.

4.1 Stabilizing Feedback Control Design
The first step in the implementation of the proposed control

scheme is finding a feedback control law for the open loop plant
P(z). This stabilizing control is needed since the open-loop plant
is marginally stable, i.e., the poles of P1(z) and P2(z) are very
close to the unit circle. From section 3 the state-space models
of P1(z) and P2(z) are known. The control is implemented in a
decoupled manner, therefore we are going to focus on one axis
only labeled Pj(z) with j = 1,2. Given the distribution of poles
and zeros of Pj(z) the controller

C(z) = KP
(z° z1)(z° z2)
(z° p1)(z° p2)

(22)

is proposed, where z1 = ρζ1, z2 = ρζ2, Kp > 0 and 1 > ρ ' 1,
with ζ1 and ζ2 being the poles of the plant Pj(z) and with p1 = 0
and p2 =°1. After tuning, using the gain margin and the phase
margin as the criteria of robustness, the closed-loop frequency
responses shown in Fig. 7 are achieved.

4.2 Adaptive Filter Algorithm
The transfer function F(z) in Fig. 6 is chosen to be an FIR

filter. This filter will be adaptive because in every time step the
vector of weights Bi = (b0 b1 b2 . . . bM°1 )T in Fig. 8 is
computed using the inverse QR-RLS algorithm. This algorithm
is a member of the family known as square-root algorithms that
solve the recursive least-squares problem in a numerically stable
manner. For details about its derivation refer to [15–19]. We say
that the filter F(z) is orderM°1 when F(z) = b0+ z°1b1+ ...+
z°M+1bM°1.

In our control scheme of Fig. 6, the goal is to achieve the
desired output ŵi for a given input sequence mi to F(z). For that
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Figure 7. Closed-loop Bode plots.
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reason, in this section, we define xi = mi and we refer to it as the
input sequence. Using the input sequence xi, the so-called regres-
sor vector is defined as Xi = (xi xi°1 xi°2 . . . xi°M+1 ). Fi-
nally we define di = ŵi, which is referred as the desired output,
and d̂i = XiBi°1, which is the actual computed output from the
adaptive filter at time i. Only for completeness we state the for-
mulation of the RLS problem and the inverse QR solution.

Consider the optimization problem

min
B

√
λ(N+1)(B° B̄)§Π(B° B̄)+

N

∑
j=0

λ(N° j)|d j°XjB|2
!

(23)

and data {Xj,d j}Nj=0, where the Xj are 1£M and the d j are
scalars. Consider also an M£ 1 vector B̄, an M£M positive-
definite matrix Π, and a positive scalar λ ∑ 1. Usually, Π is re-
ferred as the regularization matrix and λ is called the forgetting
factor.

The solution, BN , of the least-squares problem stated as (23)
can be recursively computed as follows:
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Algorithm 1 (Inverse QR-RLS): Let Σ = Π°1 and introduce
the Cholesky decomposition Σ = Σ1/2Σ§/2, where Σ1/2 is lower
triangular with positive diagonal entries. Then start with B°1 =
B̄, P1/2°1 = Σ1/2 and repeat for i∏ 0.

1. Find a unitary matrix Θi that lower triangularizes the pre-
array shown bellow and generates a post-array with positive
diagonal entries. Then the entries in the post-array will cor-
respond to

√
1 λ°1/2XiP

1/2
i°1

0 λ°1/2P1/2i°1

!
Θi =

√
γ°1/2i 0
giγ

°1/2
i P1/2i

!
. (24)

2. Update the weight vector using

Bi = Bi°1+[giγ
°1/2
i ][γ°1/2i ]°1[di°XiBi°1], (25)

where the quantities {giγ°1/2i ,γ°1/2i } are read from the post-
array. The computational complexity of this algorithm is
O(M2) operations per iteration. From the original RLS al-
gorithm it is known that the relations γi = 1°XiPiX§i and
gi = PiX§i hold [15].

Algorithm 1 was programmed in C and downloaded to the
DSP used for real-time control described in section 2. The pre-
array is triangularized using the Givens rotation method [14,15].

4.3 Experimental Results
The final test for the adaptive controller developed during

this work was done using a disturbance of bandlimited noise. In
each sampling step a random number is generated using the min-
imal random number generator by Park and Miller [21]. This
random sequence is filtered through a low-pass filter in order
to bandlimit the noise. For disturbance signals with bandwidth
smaller than 50 Hz, the adaptive scheme was able to improve
the performance achieved by the stabilizing controller described
in section 4.1, showing that as expected the system is able to
adapt and able to cancel a significant amount of the artificially
generated disturbance. It is important to mention that the the dis-
turbance signal w, in Fig. 6, of the physical system is given by
w= (I+PC)°1Padw, whereC denotes the control operator, P de-
notes the open-loop plant operator, Pa denotes the operator of the
actuator and dw denotes the random sequence out of computer 2
in Fig. 1.

Experimentally, it was observed that ensuring stability in
this adaptive scheme became a problem when the disturbance
signal was chosen with a bandwidth wider than 50 Hz. A heuris-
tic explanation for this phenomenon is that beyond the bandwidth
of the closed-loop frequency response, the identified plant Ĝ(z)

Table 1. RMS values of output error y.
Axis Feedback Only Adaptive Loop

Horizontal (h°axis) 0.0148 0.0057

Vertical (v°axis) 0.0139 0.0058

is not accurate enough to model the dynamics of the real system
G(z). This issue can be solved by finding certain conditions that
ensure robust stability of the real system. The solution will be
published in future work.

Fig. 9 and Fig. 10 show typical error and control sequences
in the h°axis and the v°axis respectively. The first 5,000 sam-
ples were taken while the system is exited in open loop. The
next 5,000 samples were taken while the system was under the
feedback control and finally the last 12,000 samples were taken
with the adaptive loop on. The numerical speed can be tuned by
changing the value of the initial matrix P°1 and the forgetting
factor λ. As expected, in general the steady-state bound can be
achieved very quickly if the order of the adaptive filter is low. In
this case the results in the plots were achieved with an adaptive
filter of order 5.

The plots depicted in Fig. 9 and Fig. 10 demonstrate that
the idea of adaptive inverse control works in this experimentally
controlled environment and these results show the applicability
of this control scheme to real systems under band-limited fre-
quency disturbances but with changing statistics such as those
faced in adaptive optics. The RMS values in the feedback con-
trol case and in the adaptive control case are shown in Table 1.
These RMS values quantify the effect of the adaptive loop with
respect to this specific stabilizing control and it permits us to con-
clude that this control strategy works as expected. Nevertheless
it is necessary to say that possibly there exists a feedback strat-
egy which has a performance comparable to the adaptive loop
performance.

5 CONCLUSIONS
This paper has presented the development of a so-called

adaptive inverse controller, which was successfully implemented
in a real time optical experiment. The potentials of this control
scheme for canceling noise have been demonstrated, specially for
optical cases, where systems are under disturbance produced by
changes in the optical path, atmospheric conditions for instance.

It is possible to conclude that the key issues involved in this
solution are the system identification and the adaptive filter algo-
rithm. It is important to mention that the coefficients of the filter
F(z) are updated each sampling time using a numerically stable
version of the RLS algorithm.

During this experimental exploration many issues have
arisen opening the door for further research, in particular those
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Figure 9. Top: Output error. Bottom: Control command sequence .
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Figure 10. Top: Output error. Bottom: Control command sequence .

relating to stability robustness.
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