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Abstract— This paper introduces a methodology for designing
real-time controllers capable of enforcing desired trajectories
on microrobotic insects in vertical flight and hovering. The
main idea considered in this work is that altitude control can
be translated into a problem of lift force control. Through
analyses and experiments, we describe the proposed control
strategy, which is fundamentally adaptive with some elements
of model-based control. In order to test and explain the method
for controller synthesis and tuning, a static single-wing flapping
mechanism is employed in the collection of experimental data.
The empirical results validate the suitability of the chosen
approach.

I. INTRODUCTION

In [1], the feasibility of flying robotic insects was empiri-

cally demonstrated. There, the lift-off of a 60-mg mechanical

fly shows that bio-inspired flapping-wing robots can generate

lift forces sufficiently large to overcome gravity. However,

to date, detailed control strategies addressing experimental

altitude control have not been reported. Here, we propose

a control scheme and a methodology for synthesizing con-

trollers for the tracking of specified trajectories along the

vertical axis. Evidence for the suitability of the considered

scheme is provided through experimental results, obtained

using the static single-wing flapping mechanism in [2].

The fundamental idea introduced in this work is that

enough information about the subsystems composing the

robotic insect can be gathered a priori, using well-known

identification methods, such that, during flight, only an

external position sensor is needed. The two main subsys-

tems relevant from a control perspective are the bimorph

piezoelectric actuator [3], used to transduce electrical into

mechanical power, and the mapping from the actuator’s

tip displacement to the lift force generated by the passive

rotation of the wing, as described in [2].

The dynamics of the system as a whole can be thought

of as a dynamic mapping, where the input is the exciting

voltage to the actuator and the output is the displacement of

the actuator’s tip. Note that this representation includes the

dynamical interaction of the robot’s rigid airframe with all

the moving parts in the microrobot, which are the actuator,

the transmission mechanism, the wing-hinge and the wing

interacting with the air. Clearly, the dynamics of this system

are significantly different to the ones exhibit by a physi-

cally isolated actuator [4]. Also, note that the displacement-

force mapping is an abstract artifact used for design, being

physically a complex system composed of the mechanical
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transmission, the wing-hinge, and the wing interacting with

the air to produce lift.
Inspired by nature [5], but also for practical reasons,

roboticists have commonly designed flapping-wing mecha-

nisms to be excited by sinusoidal signals, mostly in open-

loop configurations (see [1] and references therein). Here, we

demonstrate the design and implementation of model-based

and model-free controllers, in feedback and feedforward

configurations, for following sinusoidal reference signals.

The main idea is that, under actuator constrains, frequency,

amplitude and phase can be chosen and varied in order to

achieve specifications of lift and power. Considering this de-

sign choice, a natural control strategy is the implementation

of algorithms specialized in dealing with the tracking and

rejection of periodic signals. In this category, there are the

internal model principle (IMP) [6] based algorithms such as

those in [7], [8], [9], [10], [11] and other related articles, and

also the adaptive feedforward cancelation (AFC) algorithms

such as those in [12] and [13] and references therein.
As a first approach to the problem, in this work, we adopt a

control strategy based on a modified version of the discrete-

time ACF algorithm in [12]. Since the AFC algorithm is

a disturbance rejection scheme, here, the reference signals

to be followed are treated as disturbances to be rejected.

As in [12] and [13], the frequencies of the relevant signals

are known while the amplitudes and phases are assumed

unknown. The idea of treating the amplitudes and phases

of sinusoidal references as unknowns seems counterintuitive.

However, by the end of the paper, the reason for this

approach shall become clear.
The rest of the paper is organized as follows. Section II

explains the microrobotic flapping mechanism and the

experimental setup. Section III describes the empirical

identification of the system dynamics. Section IV discusses

the control strategies considered and the controller design

method. Section V presents experimental evidence on the

suitability of the proposed schemes. Finally, conclusions are

given in Section VI.

Notation:

• As usual, R and Z
+ denote the sets of real and non-

negative integer numbers, respectively.

• The variable t is used to index discrete time, i.e.,

t = {kTs}
∞
k=0, with k ∈ Z

+ and Ts ∈ R. As usual, Ts is

referred as the sampling-and-hold time. Depending on

the context we might indistinctly write x(t) or x(k).
• z−1 denotes the delay operator, i.e., for a signal x,

z−1x(k) = x(k − 1) and conversely zx(k) = x(k + 1).
Notice that since some of the systems involved in this

paper are time-varying, here, z is not necessarily the

complex variable associated to the z-transform.
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II. MOTIVATION AND DESCRIPTION OF THE

EXPERIMENTAL SYSTEM

A. Motivation

An important intermediate objective in our research is

the altitude control of a microrobotic fly as the one in [1],

depicted in Fig. 1. A fundamental difficulty in achieving this

goal is that due to constraints of space and weight, in our

first conceptual design, no internal sensors are considered to

be mounted in the microrobot. Instead, the design relies on

the off-line system identification of two of the subsystems

composing the robot, and in some cases, on an external

remote position sensor.

It can be shown that the control objective in the previous

paragraph can be translated into one of lift force control, and

finally as shown in Section IV, reduced to an actuator output

control problem. A first thing to notice is that from Fig. 1,

the dynamical equation governing the movement of the fly

along the vertical axis is simply

fL −mg = mẍ, (1)

where m is the mass of the fly, g is the standard gravity

constant and fL is the instantaneous lift force generated

by the flapping of the wings. In some cases, an additional

dissipative body drag term cẋ could be added to the right side

of (1), where c is a constant to be identified experimentally.

As described in [2], the lift force fL depends in a nontrivial

way, through nonlinear relationships, on the frequency and

amplitude of the flapping angle. As also discussed in [2], for

sinusoidal inputs, fL forces typically oscillate around some

non-zero mean force crossing zero periodically. Therefore,

positive vertical motion occurs when in average the lift

force fL is larger that mg. When using digital computers,

for acquisition and control, fL will be sampled at a fixed

sampling rate. Therefore, mathematically, the average force

can be approximated as

F
(NL)
L (t) = F

(NL)
L (kTs) = F

(NL)
L (k) =

1

NL

NL−1

∑
i=0

fL(k− i), (2)

where, 0 < NL ∈ Z
+. Often, the superscript (NL) will be

dropped and we will simply write FL(t), if NL is obvious

from the context.

Thus, the key element in our control strategy is the

capability of forcing the average lift force signal in (2) to

follow a specified reference. In order to develop a general

methodology to be applied to any flapping-wing microrobot

of the kind depicted in Fig. 1, here, we propose and study

algorithms and techniques for identifying the plants of the

relevant subsystems and for tuning the necessary parameters

involved. This is done empirically, using a modified version

of the experimental setup in [2], which is discussed in the

next subsection.

B. Experimental Setup

We use the experimental setup in Fig. 2, which is a modi-

fied version of the one in [2]. This setup was constructed for

the simultaneous measurement of lift forces generated by a

flapping mechanism and identification of the resulting system
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Fig. 1. Illustration of typical Harvard microrobotic fly, similar to the one
in [1]. This particular design is described in [14] (drawing courtesy of P. S.
Sreetharan).
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Fig. 2. Diagram of experimental setup used for measuring instantaneous lift
forces and displacements of the actuator’s tip. The wing-driver is attached
to an Invar double-cantilever beam, whose deflection is measured by a
capacitive displacement sensor. This deflection is proportional to the lift
force, for small deformations of the beam. The displacement of the actuator’s
tip is measured using a CCD laser displacement sensor. For details on the
force sensor see [15].

dynamics from the perspective of the mounted bimorph actu-

ator, employed to drive the microrobotic system. In Fig. 2, it

can be observed that the wing driver mechanism is mounted

on the end of a double-cantilever beam, whose deflection

is measured with a capacitive displacement sensor (CDS).

From solid mechanics principles, for small beam deflections,

there exists a linear relationship between deflection and lift

force.

The piezoelectric bimorph actuator, mounted in a carbon

fiber frame, used for flapping the wing is similar to the

one described in [3]. The linear displacement of the drive

actuator’s tip is mapped to an angular flapping motion

employing a transmission mechanism of the type described

in [1]. The resulting flapping angle is labeled by ϕ in Fig. 2.

Notice that as explained in [2], flapping induces the flexure

of the wing-hinge, generating the passive rotation that in

turn produces lift. In order to minimize the effective mass

of the beam-driver system, the actuator is fabricated as light

as possible, thus maximizing the sensor bandwidth. Further

details on the design, fabrication and calibration of the CDS-

based force sensor are given in [2] and [15].

The other variable measured is the displacement of the

actuator’s tip. As shown in Fig. 2, this is done using

a non-contact CCD1 laser displacement sensor, which is

located to a close distance from the actuator’s tip. In order

1Charge-coupled device.
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Fig. 3. Idealized system dynamics. P(z): Identified discrete-time open-loop
plant; u(t): Input voltage signal to the actuator; y(t): Output displacement
of the actuator’s tip; v(t): Output disturbance, representing the aggregated
effects of all the disturbances affecting the system, including the unmodeled
nonlinear aerodynamic forces produced by the wing flapping.

to determine the measurement, the sensor uses an optical

triangulation principle. Specifically, a semiconductor laser

beam is reflected off the target surface and passes through

a receiver lens system. Then, the beam is focused on a

CCD sensing array, which detects the peak value of the light

distribution of the beam spot. The CCD pixels within the area

of the beam spot are used to determine target position. As

the target displacement changes relative to the sensor head,

the reflected beam position changes on the CCD array. In

Fig. 2, the sensor laser reflection on the actuator is depicted

as a circular spot.

III. SYSTEM IDENTIFICATION FOR CONTROLLER DESIGN

A. Identification of the System Dynamics

The flapping mechanism described in Section II can be

seen, from the piezoelectric actuator perspective, as a system

in which the input is the voltage signal feeding the actuator

and the output is the displacement of the actuator’s tip

measured using the CCD laser displacement sensor. In this

approach the output disturbance v(t) represents the aggre-

gated effects of all the disturbances affecting the system,

including the unmodeled nonlinear aerodynamic forces pro-

duced by the wing flapping. With this idea in mind, as

depicted in Fig. 3, a discrete-time representation of the

system can be found using linear time-invariant (LTI) system

identification methods. Note that the dynamics of this system

are significantly different to the ones exhibit by a physically

isolated actuator [4]

Here, using the algorithm in [16], according to the imple-

mentation described in [17] and [18], the system in Fig. 3 is

identified, with the use of 200,000 samples generated using

a white-noise signal input u(t), at a sampling-and-hold rate

of 10 KHz. It is important to mention that due to variability

in the micro-fabrication process, the models shown in this

article are used to illustrate the proposed identification and

control strategies, but they do not necessarily represent the

typical dynamics of flapping systems.

The identified dynamics of P(z), labeled as P̂(z), are

shown in Fig. 4. There, the original 48th-order model is

shown along with reduced models with orders 12 and 4,

respectively. Notice that the identified systems have been

normalized so that the respective DC gain is 0 dB. The

natural frequency of P̂(z) is 118.36 Hz. As usual, in order to

reduce the system, a state-space realization of the identified

48th-order model is balanced [19], and then, a certain number

of states, relatively less observable and controllable than the

others, are discarded. For theoretical details see [19] and

[20]; for comments on an experimental implementation see

[17] and [18].

-60

-40

-20

0

20

M
a

g
n

it
u

d
e

 (
d

B
)

10
-1

10
0

10
1

10
2

10
3

-180

-90

0

90

180

P
h

a
s
e

 (
d

e
g

)

 

 

Identified Model of Plant P

Frequency  (Hz)

4th Order

12th Order

48th Order

Fig. 4. Bode diagram of identified model P̂(z) of the plant P(z). A 48th-
order model is shown in red, reduced 12th and 4th order models are shown
in green and blue, respectively.

IV. CONTROL STRATEGIES

A. Displacement Control of the Actuator’s Tip

As explained in Section II, in order for a robotic insect to

accurately follow a desired trajectory, a reference of the aver-

age lift force, FL(t), must be followed. In the next subsection,

we show that an empirical relationship between average lift

force and amplitude of the actuator tip displacement, for a

fixed frequency, can be found. A way of thinking of this

relationship is as a lookup table, with which, for a given

frequency, a desired average lift force is mapped into a

desired amplitude to be followed by the actuator’s tip.

In order to implement a feedback control loop around

P(z), a measurement of the actuator’s tip displacement is

required. However, in that case, a plant model is not strictly

necessary for implementing the controller in real-time. On

the other hand, employing the identified plant P̂(z) in Fig. 4,

a model-based feedforward strategy can be pursued. A

feedback control strategy is convenient in cases in which

precision and accuracy are required. For example, when

performing experiments in which relationships between ac-

tuator displacement and average lift force are estimated.

A model-based feedforward strategy will be essential for

the implementation of real-time controllers on systems in

which the use of displacement sensors is infeasible with the

available technology. For example, it is unrealistic to think

that a reliable displacement sensor could be mounted in a

flying microrobotic insect.

For reasons already commented, in both feedback and

model-based feedforward configurations, the desired outputs

from the system P(z) have the form

yd(k) = a(k)sin

(

2πk

N

)

+ b(k)cos

(

2πk

N

)

, (3)

where N is the number of samples per cycle, and a(k) and

b(k) are considered to be unknown functions of time. The
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frequency is considered known. It is somehow counterintu-

itive to think of a reference as a partially unknown signal.

However, this approach is convenient because in the lift force

control experiments, the actuator displacement reference is

generated in real-time according to a lookup table to be

discussed in the next subsection, and therefore, unknown

a priori. As discussed in the Introduction, here we use a

slightly modified version of the discrete-time AFC algorithm

in [12], which is an Euler method-based approximation of

the continuous-time AFC algorithm studied in [21]. The

proposed control scheme is shown in Fig. 5. For purposes

of analysis, let us for now assume that v(k) = 0, ∀ k. Then,

the main idea behind the algorithm is that if the signal

r(k) = −yd(k) (4)

is rejected effectively, it follows that the error

e(k) = y(k)+ r(k) = [Pu](k)+ r(k) (5)

is minimized. Consequently, if the error e(k) in (5) is mini-

mized, the system output y(k) closely follows the reference

yd(k).
Ideally, for a stable minimum phase plant P, in order to

cancel r(k), the control signal should be u(k) =−
[

P−1r̂
]

(k),
where r̂(k) is an estimate of r(k). However, most systems are

non-minimum phase, in which instances, the best minimum

phase approximation of P(z), P̄(z), should be used. In that

case, P̄−1 would produce an unwanted effect on the mag-

nitude and phase of r̂(k). Fortunately, since the magnitude

and phase of the periodic signal r(k) are being estimated

adaptively, the system inverse can be ignored and the new

control signal simply becomes

u(k) = −

[

α̂(k)sin

(

2πk

N

)

+ β̂(k)cos

(

2πk

N

)]

, (6)

with the adaptive law

α̂(k) = α̂(k−1)+ γe(k−1)sin

(

2πk

N
+ φ

)

, (7)

β̂ (k) = β̂ (k−1)+ γe(k−1)cos

(

2πk

N
+ φ

)

, (8)

where y(k) is the measured actuator’s tip displacement, and

according to (5), e(k−1)= y(k−1)+r(k−1). The symbol γ
represents an adaptation gain, chosen by simulation, using a

computer model of the system depicted in Fig. 5. The phase

parameter φ is also chosen by simulation.

In this article, we introduce the notion that the reference

signal r(k) in Fig. 5 can be seen as an output disturbance, and

therefore, that the reference-following problem considered

here is very similar to the disturbance rejection case in

[13]. Note that since u(k) is filtered through P(z), α̂(k)
and β̂ (k) are not estimates of a(k) and b(k), respectively.

Nonetheless, as explained in [13], the ideas on stability and

convergence, for the input disturbance case, discussed in [12]

and references therein, apply to this case.

Later in this section, we will show that a significant part

of the frequency content of the disturbances affecting the

microrobotic flapping-wing system, for a sinusoidal r(k),
modeled as the output disturbance v(t), is the result of

Adaptive

Law
�

�

�h×

h×
h+
?

6
P(z)

u(k)�

?

6

sin
(

2πk
N

)

cos
(

2πk
N

)

h+- ?

h+- �

h× h×- �? ?

sin
(

2πk
N

)

cos
(

2πk
N

)

−a(k) −b(k)

r(k)

−α̂(k)

−β̂(k)

h+- ?

v(k)

e(k) = y(k)+ r(k)

Fig. 5. AFC scheme for rejecting r(k) and tracking yd(t).

harmonics of the fundamental frequency fr , where fr is the

frequency of the periodic signal r(t)= r(kTs)= r(k) in Fig. 5.

This nonlinear effect can be modeled by connecting a linear

model and a polynomial mapping in a so-called Volterra

configuration. However, a compelling physical explanation

behind this phenomenon is still lacking and these issues

remain a matter of further research. Nonetheless, it is impor-

tant to mention that the appearance of harmonics in natural

insects has been reported [5], which suggests that there might

be a fluid mechanics explanation of the phenomenon.

Disturbance profiles of this kind are reminiscent of the

repeatable runout described in the hard disk drive (HDD)

literature (see [12], [13], [11] and references therein). Thus,

it is possible that the reasons for the appearance of harmonic

disturbances in this case are similar to ones in the HDD case.

Though the causes of this phenomenon are relevant to the

physics of the particular system, they are not necessary for

the implementation of a scheme capable of rejecting them.

Thus, let us assume that

d(k) = r(k)+ v(k)

=
n

∑
i=1

[

ai(k)sin

(

2π ik

N

)

+ bi(k)cos

(

2π ik

N

)]

, (9)

where i is the index for the corresponding harmonic, N

is the number of samples per cycle, and the reference

signal is relabeled as r(k) = a1(k)sin
(

2πk
N

)

+b1(k)cos
(

2πk
N

)

.

Obviously, the other components of d(k) in (9) are assumed

to be part of v(k).
Everything argued in the previous paragraphs, for the case

d(k) = r(k), is fundamentally valid for the case in which

d(k) = r(k)+ v(k) with the form in (9). Thus, as in [13], a

canceling control signal for the case in (9) is

u(k) = −
n

∑
i=1

[

α̂i(k)sin

(

2π ik

N

)

+ β̂i(k)cos

(

2π ik

N

)]

. (10)
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The update equations for the estimated parameters become

α̂i(k) = α̂i(k−1)+ γie(k−1)sin

(

2π ik

N
+ φi

)

, (11)

β̂i(k) = β̂i(k−1)+ γie(k−1)cos

(

2π ik

N
+ φi

)

, (12)

where the γi are adaptation gains, chosen differently for each

harmonic. A phase advance modification can be added to

reduce the sensitivity and allow for more harmonics to be

canceled as was done previously in [12] and [13], if nec-

essary. Sometimes it is convenient to choose φi = ∠P(e jθi),

with θi = 2π i
(

fr
fs

)

, where fr and fs are the frequency of r(t)

and the sampling frequency of the system, respectively. As

in the case where d(k) = r(k), in this case, α̂i(k) and β̂i(k)
are not estimates of ai(k) and bi(k), respectively.

Following the method in [12], and as done in [13], the

adaptive feedforward disturbance rejection scheme in Fig. 5

can be transformed into an LTI equivalent representation.

By treating the rejection scheme as an LTI system, the

sensitivity function from d(k) to e(k) can be computed,

allowing a performance evaluation of the whole system.

Here, this analysis is omitted because it can be easily done

following the example in [13].

Due to limitations of space and weight, it is currently

unreasonable to design a flying microrobot under the assump-

tion that internal sensors can be mounted into the device.

Therefore, here we explore the feasibility of implementing

the scheme considered in Fig. 5 after replacing sensors by

identified models, as shown in Fig. 6. There, the control

signal u(k) is used as input to the system plant, P(z), and

also to an identified model of it, P̂(z). Instead of using the

measured signal y(k) to update the gains α̂(k) and β̂ (k), an

estimate of y(k), ŷ(k), is used for that purpose.

In order to demonstrate the suitability of the proposed

methods, here we show four experimental cases, in Figs. 7,

8, 9 and 10, respectively. The first case is shown for purposes

of analysis and comparison, in which no control is applied

to the system. Here, the system is excited in open loop

by a sinusoidal signal u(t) = yd(t) = Ar sin(2π frt) with

normalized amplitude Ar = 1 and frequency fr = 105 Hz. The

normalization is such that a constant input u(t) = 1 generates

an output equal to 1.

Three things should be noticed in Fig. 7. The first is that

the system can be approximated by the use of a linear model.

This is clear from the fact that the power spectral density

(PSD) estimate of the output y(t) shows that most of the

signal power is concentrated at the fundamental frequency

of the reference, 105 Hz. The second is that, as expected,

the phase and magnitude of the output are changed with

respect to the input. The third is that a pattern of harmonics

appears in the output signal’s PSD. As explained before, the

physics of the underlying phenomenon is not completely

understood. However, these harmonics can be treated as

output disturbances affecting the system.

Cases 2 and 3 are shown in Figs. 8 and 9, respectively.

In these cases, yd(t) = Ar sin(2π frt) and r(t) = −yd(t), with

Ar = 1 and fr = 105 Hz. Case 2 is the implementation of

the adaptive scheme in Fig. 5, with the adaptive law in

TABLE I

RMS VALUE OF THE CONTROL ERROR SIGNAL e(k), FOR FOUR

EXPERIMENTAL CASES

Case 1 2 3 4

RMS value 1.2107 0.1417 0.0867 0.1735

Adaptive

Law
�

�

�h×

h×
h+
?

6
P̂(z)

u(k)

P(z)- - h+
?

v(k)

-y(k)

�

?

6

sin
(

2πk
N

)

cos
(

2πk
N

)

h+- ?

r(k)

−α̂(k)

−β̂(k)

ê(k) = ŷ(k)+ r(k)

Fig. 6. Model-based AFC scheme for rejecting r(k) and tracking yd(t).

(6), (7) and (8). Clearly, the control strategy is capable of

correcting for the phase shift and magnitude amplification,

but as expected, the harmonics remain essentially the same

of Case 1. Case 3 is the implementation of the adaptive

scheme with the adaptive law in (10), (11) and (12), which

from this point onwards is referred as harmonic rejection

scheme (HRS). Unequivocally, the control method is capable

of correcting for the phase shift, the magnitude amplification,

and also to reject the first three harmonics, targeted in this

experiment. This is evidenced by the bottom plot of Fig. 9,

which compares the PSD estimates of the measured outputs

y(t), with and without using the HRS.

Finally, Case 4 is shown in Fig. 10. This is the implemen-

tation of the model-based AFC scheme in Fig. 6, with the

same desired output yd(t) of Case 2. Due to discrepancies

between the model P̂(z) and the physical system P(z), the

performance is degraded respect to the ones obtained using

the scheme in Fig. 5 and the HRS. However, this degradation

is not significant in the context of this research. The control

errors are summarized in Table I.

B. Empirical Relationship Between the Actuator Tip’s Dis-

placement and Lift Force

The considered control strategy relies on rejecting the

signal r(k) by the use of the fully adaptive scheme in Fig. 5

or the model-based adaptive scheme in Fig. 6. In order

to generate a signal r(t) = −yd(t) = −Ar sin(2π frt) with

the appropriate phase and amplitude required for generating

a desired average lift force profile, in this subsection we

present an experimental method for finding a lookup table
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in open loop, with Ar = 1 and fr = 105 Hz. Bottom Plot: PSD estimate of
the measured output y(t) in open loop.
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Fig. 8. Case 2. Upper Plot: Time series of yd(t) = Ar sin (2π frt) and y(t),
using adaptive scheme in Fig. 5, with Ar = 1 and fr = 105 Hz. Bottom Plot:
PSD estimate of the measured output y(t).

that maps the amplitude of the output signal y(t) to the

average lift force FL(t), for fixed frequencies.

Arbitrarily, we pick five fixed values for the frequency

fr, 105, 120, 135, 150 and 180 Hz, and within these

drive frequencies, the amplitude of r(t) is varied. Using

the fully adaptive scheme in Fig. 5, we ensure that the

actual output y(t) rejects and follows the chosen r(t) and

yd(t), respectively. Then, using the force sensor described in

Section II, for a fixed frequency and a given amplitude, the

average lift force is measured. For example, Fig. 11 shows

the instantaneous and average forces when fr = 105 Hz,

the amplitude of yd(t) is equal to 1.2 and NL = 1,000.

Repeating the experiment for different amplitudes, a mapping

describing the amplitude-force relationship can be found.
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Fig. 9. Case 3. Upper Plot: Time series of yd(t) = Ar sin (2π frt) and y(t),
using the HRS, with Ar = 1 and fr = 105 Hz. Bottom Plot: Comparison of
the estimated PSDs of the measured outputs y(t), with and without using
the HRS.
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Fig. 10. Case 4. Upper Plot: Time series of yd(t) = Ar sin (2π frt) and
y(t), using the model-based adaptive scheme in Fig. 6, with Ar = 1 and
fr = 105 Hz. Bottom Plot: PSD estimate of the measured output y(t).

Thus, for fr = 105 Hz, in Fig. 12 each symbol ⋆ represents

an experiment in which 200,000 data points were collected.

Here, it can be observed that the average lift force varies

roughly in a linear manner on the amplitude of the signal

r(t). Then, using the least-squares method, a line is fitted to

the data. This is shown as a dashed red line.

Besides its rough linearity, another remarkable feature of

the relationship between average lift force and the amplitude

of r(t) is that the rightmost data-point ⋆ marks the maximum

actuator displacement amplitude achievable at the frequency

fr = 105 Hz. The hard physical constraint is the amplitude

of the control signal u(t) that feeds the amplifier connecting

the digital controller to the bimorph piezoelectric actuator.
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TABLE II

RMS VALUE OF CONTROL SIGNAL u(k), REQUIRED FOR GENERATING

35 mg OF LIFT FORCE

fr 105 Hz 120 Hz 135 Hz 150 Hz 180 Hz

RMS value Infeasible 0.9340 0.8606 0.7521 0.9408

This signal cannot exceed 1 V, because it is amplified by a

factor of 100 and biased by 100 V before being fed to the

actuator, which by design does not tolerate voltages larger

than 200 V. Thus, the maximum feasible amplitude of yd(t)
depends on the frequency fr, and can be easily estimated

by looking at the Bode plot of the identified plant P̂(z) in

Fig. 3. For further details on the actuator’s physics see [3].

The same experiment was repeated with fr taking the val-

ues 120, 135, 150 and 180 Hz. The corresponding data points

and fitted lines are shown in Fig. 12. Around the natural

frequency of the system P(z), increasing the frequency fr,

increases the magnitude of the average lift force. This is

consistent with the idea that for certain frequency ranges,

the passive rotation of the wing around the wing hinge

is increased, producing stronger lift forces. As discussed

in [2], and mentioned earlier in this article, the dynamics

describing the relationship between flapping signals and lift

forces are highly nonlinear. Therefore, the data shown here

are for illustrating the proposed control scheme, and not for

explaining a physical phenomenon, since these results are

contingent to this particular experimental case.

With the previous comments in mind, a second thing to

notice is that it is not necessarily the best control strategy

to choose fr equal to the natural frequency of P(z). For

example, among the options in Fig. 12, the best choice

is fr = 150 Hz. To explain this, consider the hypothetical

case of a 70-mg fly, in which each wing should produce

more than 35 mg of average lift force to cause a vertical

ascent of the microrobot. Clearly, more than 35 mg can

be generated with amplitude 1 and fr = 180 Hz, amplitude

1.1 and fr = 150 Hz, amplitude 1.4 and fr = 135 Hz, and

amplitude 1.6 and fr = 120 Hz. Notice that it is infeasible

to generate a force larger than 35 mg with fr = 105 Hz.

Therefore, the obvious choice is fr = 150 Hz, because it

is not only possible to generate an average lift force larger

than 35 mg, but also because the maximum achievable force

exceeds 50 mg, allowing a greater maneuverability. The RMS

values of the required control signals for producing 35 mg are

summarized in Table II. Notice that the required signal with

smallest RMS value corresponds to the case fr = 150 Hz.

The purpose of finding an empirical relationship between

the actuator tip displacement and the generated average lift

force is schematized in Fig. 13. Here, x(t) is the altitude

of a fly as modeled in Subsection II.A, measured using an

external sensor or camera and xd(t) is the desired vertical

trajectory. Using xd(t) or ex(t) = xd(t)− x(t) and an upper

level control law, a desired average lift force FL(t) can be

generated. Then, using a lookup table, obtained empirically

as was done in Fig. 12, FL(t) is mapped to a desired reference
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Fig. 11. Example showing instantaneous and average forces.
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Fig. 13. Depiction of an upper level altitude control strategy.

r(t) to be used in the scheme in Fig. 6. An experimental

example is described in the next section.

V. EXPERIMENTAL LIFT FORCE CONTROL EXAMPLE

In this section, we present an experimental example of

altitude control. Since the main idea is to demonstrate lift

control using the adaptive scheme in Fig. 6, we employ

a simple open-loop upper level control law. The objective

is to follow an average lift force signal, FL(t), such that

a 70-mg robotic fly would move from 0 to 0.3 m and

then return to 0 m in no more than 3 s. Using the model

in Subsection II.A and the experimental data obtained for

plotting Fig. 12, through computer simulation the complying

a priori trajectory in Fig. 14 was found. Also according to the

simulation, the a priori trajectory in Fig. 14 is achievable by

tracking the desired average lift force signal in red in Fig. 15,

where NL = 1,000.

The resulting experimental average lift force is plot-

ted in blue in Fig. 15, which using the control strat-

egy in Section IV, results from choosing r(t) = −yd(t) =
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Fig. 16. Comparison of the time series of the experimental yd(t) and y(t)
generating the average lift force in Fig. 15. Left Plot: Complete series. Right
Plot: Transition from Ar = 1.2 to Ar = 0.95.

−Ar sin(2π150t), with Ar = 1.2 for t ∈ [0,0.347) s and Ar =
0.95 for t ∈ [0.347,5] s. The time series of the experimental

reference, yd(t), and output, y(t), are shown in Fig. 16.

Here, on the left the complete signals are compared, and

on the right the transition from Ar = 1.2 to Ar = 0.95 is

shown. Notice that y(t) is capable of following yd(t) and

that the transition is smooth, because P(z) is under the

control of the feedforward scheme in Fig. 6. According to

the simulations, the estimated resulting a posteriori trajectory

is shown in blue in Fig. 14, which indicates that more

elaborated upper level control laws are required for achieving

complex trajectories.

VI. CONCLUSION AND FUTURE WORK

In this paper, we presented an investigation on the issue

of enforcing desired trajectories on microrobotic insects in

vertical flight and hovering. We argued, using analyses and

experimental data, that the original problem can be converted

into one of average force lift control, and finally, into one

of displacement tracking of the bimorph actuator’s tip. In

order to test the concepts introduced here, we used a single-

wing static flapping mechanism. In the future, we will further

investigate several issues that remain open, among others,

the design of upper-level control strategies, the nonlinear

modeling of the mapping from actuator’s tip displacement to

lift force, and the experimental implementation of the control

strategy into a two-wing fly in vertical motion and hovering.
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