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Abstract— This paper introduces a new method for synthesiz-
ing multiple-period repetitive controllers, which are suitable for
integration into a combined adaptive-repetitive control scheme.
The proposed synthesis method can be implemented recursively
reducing the complexity of controller design considerably when
compared with other methods available in the literature. In
order to exemplify the synthesis procedure, a multiple-period
adaptive-repetitive controller is designed for track-following
control of a commercial hard disk drive and implemented in
real-time using a digital signal processor. Experimental results
show the effectiveness of the approach introduced in this work.

I. INTRODUCTION

Repetitive control [1], [2] has been demonstrated to be

very effective in rejecting disturbances when implemented

on systems affected by periodic disturbances, such as, hard

disk drives (HDD), electric motors and generators, other

rotating machines, and satellites. Also, repetitive control

has been shown to be an appropriate tool when applied to

periodic tracking problems in power electronics, manufac-

turing and robotics. In both kind of problems, disturbance

rejection and tracking, it is not rare to encounter applications

where controllers capable of dealing with signals composed

of multiple periods are required. Common examples are

electromechanical systems containing multiple gears. This

paper is devoted to the development of a new method

for synthesizing repetitive controllers capable of rejecting

multi-periodic output disturbances affecting the plant to be

controlled.

The main feature of the method introduced here is that it

produces multiple-period controllers suitable for integration

into the combined adaptive-repetitive control scheme pre-

sented in [3], which is based on the notions of internal

model [4] and adaptive minimum-variance regulation [5].

The first part of this paper deals with the reformulation

of the original disturbance rejection control problem as a

polynomial algebraic one, and also, with finding an explicit

analytical solution for it. In general, the existence of a solu-

tion with an explicit analytical expression does not guarantee

simple computability. For this reason, the second part of this

paper presents the development of a recursive algorithm that

reduces significatively the complexity of control synthesis.

Previous works have addressed the problem of multiple-

period repetitive control, from both theoretical and practical
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perspectives, e.g., [6], [7], [8]. However, those solutions

are not easily integrable into the scheme presented in [3],

considered here. For that reason, in this work we introduce

an alternative approach, which extends the methods for

designing one-period adaptive-repetitive controllers in [3] to

the multi-periodic case, following the ideas and guidelines in

[9], [10], [2] and [11]. Experimental results obtained using

a commercial HDD demonstrate the effectiveness of the

resulting control synthesis method.

The rest of the paper is organized as follows. Section II

reviews some fundamentals concepts of repetitive control.

Section III presents the main contribution of this paper,

which is a new method for synthesizing multiple-period

repetitive controllers. Section IV describes a multiple-period

adaptive-repetitive control scheme. Section V presents ex-

perimental results. Finally, some conclusions are given in

Section VI.

II. PRELIMINARIES ON REPETITIVE CONTROL

A. One-Period Repetitive Control for Disturbance Rejection

In this section, we review some fundamental ideas on

one-period repetitive control that will be used later in this

paper. First, consider the block diagram in Fig. 1. There,

G is a stable linear time-invariant (LTI) system and w is a

disturbance considered to be mostly formed by a combina-

tion of sinusoidal sequences with frequencies multiple of a

fundamental one. If the original plant system is unstable, it

is assumed that it can be stabilized by LTI feedback control.

G- - h? -u y

w

Fig. 1. LTI plant G and output disturbance w.

To begin with, we describe a repetitive control method for

feedforward disturbance rejection in which the signal w is

assumed to be available for measurement. This is a design

assumption, since in practice w can be estimated but not

directly measured. Also, it is assumed that the fundamental

frequencies of the periodic signals forming part of w are a

priori known. Thus, the natural control goal is the synthesis

of a stable feedforward filter K, such that, the frequency

response of the LTI system 1−KG is zero, or close to zero,

at the same periodic frequencies of the sinusoidal signals

composing w. This approach results in the block diagram in

Fig. 2, where

y = w−GKw = (1−GK)w. (1)
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Notice that the problem posed as in Fig. 2 becomes

a feedforward tracking control problem. It is immediately

clear that for the ideal case where G is minimum phase

with relative degree 0, the best choice is to pick K =
G−1. However, it is not unusual to encounter discrete-

time systems, obtained from sample-and-hold equivalence

of continuous-time systems, that have unstable zeros. An

alternative approach, the one chosen here as in [3], is to

define an error transfer function E = 1−GK and then force

the frequency response of E to be zero periodically at certain

desired frequencies. This objective is achievable by using

the polynomial design methods in [9], following the general

guidelines presented in [2] and [10]. The main idea is to

enforce an error transfer function with the form E = RD,

where D can be thought of as an internal model for the

disturbance w and R is an a priori unknown stable transfer

function. For the one-periodic class of signals considered in

this section, the internal model is chosen to be

D = 1−qz−N , (2)

where q is a zero-phase low-pass filter and N is the period

of the periodic disturbance to be attenuated.

The filter q will allow us some flexibility over the fre-

quency range of disturbances to be canceled while maintain-

ing stability. The filter D has a combed shape with notches

matching the frequencies of the periodic signals forming part

of w. Thus, a filter K that makes the frequency response of E

close to zero at desired periodic frequencies can be computed

by solving the Diophantine equation

RD+KG = 1, (3)

where R and K are the unknowns. Similar approaches but

with slightly different internal models can be found in [12]

and references therein.

Now, we briefly discuss the existence of solutions for (3).

First, notice that (3) can be rearranged as

bR (aKaGbD)+bK (aRaDbG) = aKaGaRaD, (4)

where the polynomial numerators are denoted by the symbol

b, the polynomial denominators by the symbol a and the

subindices indicate the corresponding transfer function in (3).

It is immediate from [9], and references therein, e.g., [13],

that for given polynomials aG, bD, aD and bG and chosen

polynomials aK and aR, (4) has a solution if and only if

the greatest common factor of aKaGbD and aRaDbG divides

aKaGaRaD. In general if this condition is satisfied, we say

that G and D are coprime.

As shown in [2] if a solution pair {Ro,Ko} is found,

then (3) characterizes a whole family of stabilizing internal

G- - h? -−K-w u y

w

Fig. 2. Feedforward output disturbance rejection scheme.

model-based repetitive controllers. As in [3], following the

guidelines in [2] and [10], a method for finding a particular

solution pair {Ro,Ko} is presented here. The method starts

by separating G into its minimum and non-minimum phase

parts, denoted by G+ and G− respectively. Thus,

G =
B

A
=

B+B−

A
= G+G−,

G+ =
B+

A
, G− = B−.

(5)

Where all the zeros of B+ are stable, and all the zeros of B−

are unstable. Often, B+ and B− are referred as the cancelable

and uncancelable parts of the numerator B of G, respectively.

Now, substituting (5) into (3) we can write

RD+κG− = 1, κ = KG+. (6)

Among the infinity many solutions to (6), it is verifiable by

simple algebraic manipulations that one of the solutions is

given by

Ro =
1

1− (1− γG∗
−G−)qz−N

,

κo = qγG∗
−z−NRo, Ko = κoG−1

+ .

(7)

Here, G∗
− is defined as G∗

−(z−1) = G−(z), and 0 < γ ∈ R.

From this point onwards, in block diagrams and equations

we employ the symbols Ko and Ro, under the understanding

that those correspond to the specific solution in (7).

The block diagram in Fig. 2 assumes that the signal

disturbance w is available for measurement. However, in

practice w has to be estimated on-line according the diagram

in Fig. 3, where Ĝ is an identified model of G and ŵ is the

estimate of w. Clearly, when the estimation scheme shown in

Fig. 3 is employed, the feedforward disturbance cancelation

filter Ko becomes part of a feedback controller υo computable

as

υo =
−Ko

1−KoĜ
. (8)

It is immediately noticeable that the stability and perfor-

mance of the closed-loop system, resulting from the intercon-

nection of G and the single-input-single-output (SISO) LTI

controller υo, can be analyzed using all the tools of classical

control, such as, gain and phase margins, along with the use

of sensitivity functions. In this case, we are interested in the

output disturbance sensitivity function

ζo =
1

1−Gυo

. (9)

Notice that under the assumption that Ĝ = G, it follows that

ζo = 1−GKo, (10)

which is the feedforward mapping from w to y, shown in

Fig. 2. This implies that the closed-loop performance is not

altered by the estimation process as long as the model Ĝ is

an exact representation of the true plant G.
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The previous development establishes that the closed-loop

system will be stable for stable plants G and Ko, under

the assumption that Ĝ = G. Thus, we need a method to

ensure that the design algorithm produces a stable Ko. This

is discussed in the next subsection.

G --

Ĝ --

−Ko
¾

h? -

?h

w

yu

−

ŵ

υo

Fig. 3. Estimation of w and repetitive control scheme.

B. Nominal Stability Analysis

In order to have a nominally stable closed-loop system all

what needs to be done is to ensure that the design algorithm

yields a stable controller Ko. Recalling the definition of Ko

in (7), notice that Ko is formed by the multiplication of the

systems qγG∗
−z−N , Ro, and G−1

+ . By definition G−1
+ is stable.

The system qγG∗
−z−N is stable and causal provided that q is

stable and that N is large enough. Thus, Ko will be stable as

long as Ro is stable. Here, we state a sufficient condition for

the stability of Ro which is based on the small gain theorem

[14]. First, notice that Ro can be represented by the block

diagram in Fig. 4, where N = Na + Nb, such that, z−Na and

z−Nb make the systems qz−Na and
(

1− γG∗
−G−

)

z−Nb causal,

respectively.

The small gain theorem implies that a sufficient condition

for asymptotic stability is
∥

∥

(

1− γG∗
−G−

)

z−Nb
∥

∥

∞

∥

∥qz−Na
∥

∥

∞
< 1, (11)

which can be translated into

|1− γG∗
−(e jθ )G−(e jθ )| <

1

|q(e jθ )|
, ∀ θ ∈ [0,π]. (12)

In (12) the real number γ can be thought of as a stability and

performance tuning parameter. It is important to emphasize

that when (12) is satisfied, the resulting controller Ko is stable

and consequently the closed-loop system is stable as well.

The systems involved are LTI, therefore, an appropriate way

to analyze stability robustness is the use of the notions of

gain and phase margins, from classical control theory. This

approach will be employed in the design examples to be

presented later in this paper.

III. MULTIPLE-PERIOD REPETITIVE CONTROL

A. Proposed Controller Design Method

In this subsection we introduce the main contribution

of this paper, which is a new method for synthesizing

(

1− γG∗
−G−

)

z−Nb

qz−Na h¾ ?

-

¾

?

input

output

Fig. 4. Representation of Ro as a typical feedback configuration.

multiple-period repetitive controllers. The design method for

synthesizing one-period repetitive controllers presented in the

previous section can be integrated into a combined adaptive-

repetitive controller scheme to be presented in Section IV.

In order to design a multiple-period adaptive-repetitive con-

troller with the same capability, we need to solve (6) with

a corresponding multiple-period internal model D. From

the internal model principle, it follows that for targeting L

different periods a suitable L-period D is given by

D =
L

∏
k=1

1−qkz−Nk . (13)

Thus, the next step is to solve (6) with the internal model

in (13). In order to accomplish that, first we need to define

some concepts to be used later.

Definition 1. An r-combination of a set is a subset of size

r. For example, for the set {a,b,c}, we have the following

three 2-combinations: {a,b}, {a,c} and {b,c}.

Definition 2. For a LTI system G−, exponentials are

defined as follows: G0
− = 1 and Gk

− = G−G− . . .G−, k times.

Definition 3. For a number k ∈ N (being N the set of

natural numbers), the system fk is defined as

fk =
G∗
−qkγkz−Nk

1− (1− γkG∗
−G−)qkz−Nk

, (14)

where qk is a zero-phase low-pass filter, 0 < γk ∈ R (being

R the set of real numbers), and Nk ∈ N.

With the use of the previous definitions we state a theorem

that will serve as a guideline for synthesizing multiple-period

repetitive controllers.

Theorem 1. A particular solution to the L-period problem

is given by

Ro =
L

∏
k=1

1

1− (1− γkG∗
−G−)qkz−Nk

, (15)

and by

κo =
L

∑
k=1

∑
s∈Sk

(−1)k+1Gk−1
− Fks, Ko = κoG−1

+ , (16)

with

Fks =
k

∏
j=1

fs j
, (17)

where s is a vectorial index s = {s1, . . . ,sk} ∈ N
k and Sk

is the set that contains all the k-combinations of the set
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{1,2, . . . ,k, . . . ,L}. The functions fs j
are computed according

to (14).

Proof. Notice that relation (16) holds if and only if the

system κ
(n+1)
o for the (n + 1)-period case can be computed

recursively from the system κ
(n)
o for the n-period case as

κ
(n+1)
o = κ

(n)
o −κ

(n)
o G− fn+1 + fn+1, (18)

with κ
(1)
o given by (7). Notice that the superscripts in

parentheses, (n +1), (n), etc. refer to the recursion number

and they do not denote exponentials as in Definition 2.

Also, it is immediate that

R
(n+1)
o =

R
(n)
o

1− (1− γn+1G∗
−G−)qn+1z−Nn+1

, (19)

with R
(1)
o given by (7). Thus, having the solution given by

(18) and (19) a recursive form, it is proven using mathemat-

ical induction.

• For n = 1: It follows immediately from (7).

• For n + 1 assuming the solution for n: What needs to

be shown is that relations (18) and (19) satisfy

R
(n+1)
o D(n+1) +κ

(n+1)
o G− = 1, (20)

provided that

R
(n)
o D(n) +κ

(n)
o G− = 1. (21)

To show that (18), (19) and (21) imply (20), the

right side of (18) and the right side of (19) are

replaced into the left side of (20). Thus, we obtain

R
(n)
o D(n) +κ

(n)
o G−

1− (1− γn+1G∗
−G−)qn+1z−Nn+1

−
(R

(n)
o D(n) +κ

(n)
o G−)qn+1z−Nn+1 − γn+1G∗

−G−qn+1z−Nn+1

1− (1− γn+1G∗
−G−)qn+1z−Nn+1

.

(22)

Now, noticing (21), it follows that the numerator

and denominator in (22) are identical, then (20)

follows, and therefore, (15) and (16) follow as

well, which completes the proof of Theorem 1.

¥

Remark 1. Notice that the previous proof is constructive,

and therefore, (18) gives us a recursive method for synthe-

sizing controllers for an arbitrary number of periods.

Remark 2. One could naı̈vely think that an internal model

with the form of (13) is not necessary and that it would be

enough to consider an internal model with the form of (2),

with N being the least common multiple of all the Nk, k =
1, . . . ,L. However, this would produce sensitivity functions

with an unnecessarily large number of notches, and also this

could lead to numerically untractable problems. For example,

consider the case N1 = 3, N2 = 4, with L = 2. In this case if

we were to solve the problem using an internal model with

the form of (2), the N corresponding to the least common

multiple of N1 = 3 and N2 = 4 would be 12, which implies

that the resulting sensitivity function would have 12 notches

on the range [0, fs], where fs is the sampling frequency. On

the other hand, if we were to solve the same problem using an

internal model with the form of (13), the resulting sensitivity

function would have 7 notches on the range [0, fs], only.

A more dramatic case is N1 = 78, N2 = 134, with L = 2,

to be considered in the experimental section. In this case,

N1 +N2 = 212, whereas the least common multiple of N1 =
78 and N2 = 134 is 5,226!

In the following paragraphs we show examples aimed to

explain the proposed controller synthesizing process.

Example 1. Consider a generic case with L = 3. The

computation of R
(3)
o follows from (15). The computation of

κ
(3)
o is done as follows.

To begin with, we compute the systems defined by (17).

For k = 3, the only 3-combination of the set {1,2,3} is

{1,2,3}, then S3 = {{1,2,3}}, and therefore, we have

F3{1,2,3} = f1 f2 f3.

For k = 2, the 2-combinations of the set {1,2,3} are {1,2},

{1,3} and {2,3}, then S2 = {{1,2};{1,3};{2,3}}, and there-

fore, we have

F2{1,2} = f1 f2; F2{1,3} = f1 f3; F2{2,3} = f2 f3.

For k = 1, the 1-combinations of the set {1,2,3} are {1},

{2} and {3}, then S1 = {{1};{2};{3}}, and therefore, we

have

F1{1} = f1; F1{2} = f2; F1{3} = f3.

Now, we compute the interior sums in (16). For k = 3, the

interior sum is

∑
s∈S3

F3s = f1 f2 f3.

For k = 2, the interior sum is

∑
s∈S2

F2s = f1 f2 + f1 f3 + f2 f3.

For k = 1, the interior sum is

∑
s∈S1

F1s = f1 + f2 + f3.

Thus, κ
(3)
o is given by

κ
(3)
o = f1 + f2 + f3 −G−( f1 f2 + f1 f3 + f2 f3)+G2

− f1 f2 f3.

Remark 3. Notice that given that the vectorial indices s

are formed using the concept of r-combination, the order of

the elements in s is irrelevant, and therefore, permutations

of the elements in s do not change the index. For example,

consider S2 in Example 1. There, if the second index in S2,

{1,3}, is replaced by {3,1}, the result remains invariant since

F2{3,1} = f3 f1 = f1 f3 = F2{1,3}.

As stated in Remark 1, relation (18) gives us a method

for synthesizing repetitive controllers with any number of

periods recursively. This is illustrated with the following

example.
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Example 2. We consider the same problem in Example 1,

but we solve it recursively. To begin with, we notice that

κ
(1)
o = f1.

The second recursion is given by

κ
(2)
o = f1 − f1G− f2 + f2.

And finally the third recursion solves the problem as

κ
(3)
o = f1 − f1G− f2 + f2 − ( f1 − f1G− f2 + f2)G− f3 + f3

= f1 + f2 + f3 −G−( f1 f2 + f1 f3 + f2 f3)+G2
− f1 f2 f3.

B. Nominal Stability Analysis

The first thing to notice is that the controller Ko is formed

by summations and products of transfer functions fk, k =
1, . . . ,L with themselves and with the plant G−. Therefore,

if each transfer function in the set { f1, f2, . . . , fL} is stable,

then the resulting controller Ko will be stable as well. Thus,

following the development in the previous section, it is clear

that a sufficient condition for stability is

∣

∣

∣
1− γkG∗

−(e jθ )G−(e jθ )
∣

∣

∣
<

1

|qk(e jθ )|
, ∀ θ ∈ [0,π] (23)

for k = 1, . . . ,L.

This condition might look conservative. However, in the

experimental section, we show that it is an appropriate

guideline for design.

IV. AN ADAPTIVE-REPETITIVE CONTROL SCHEME

A. Repetitive and Minimum-Variance Control

The principal reason for solving the repetitive control

problem as in the previous sections is that this method

allows us to formulate a H2 control problem, which can

be approximated by the adaptive scheme presented in [3],

described here. To begin with, let us consider an arbitrary

rational LTI asymptotically stable filter Q, i.e., Q ∈ RH∞.

Also, let

R(Q) = Ro −QG, (24)

K(Q) = Ko +QD. (25)

It is clear that systems R(Q) and K(Q) in (24) and (25) define

an entire family of solutions to the Diophantine equation

in (3). Notice that R(Q) and K(Q) belong to RH∞ for all

Q ∈ RH∞, provided that D and G are stable.

The previous parametrization allows us to formulate a

new control problem as an optimization one. Specifically,

we would like to minimize the variance of the system output

random variable y(k) ∀ k. Notice that from this perspective,

the sequence y, in Fig. 2 and other figures, is a realization

of the random process y. Now, let y be a stationary mean-

ergodic and covariance-ergodic random process for any given

stable LTI filter Q. Then, the problem becomes

min
Q∈RH∞

E{y2(k)}. (26)

Notice, that if E{y2(k)} = σ2, the ergodicity assumption

implies that limN→∞
1
N ∑N

k=0 y2(k) = σ2, with probability 1.

Also, it is verifiable that (26) is equivalent to the H2 problem

min
Q∈RH∞

‖W −GK(Q)W‖2 , (27)

where W is a stable filter that maps a stationary, white, zero-

mean, unit-variance random sequence to the disturbance w.

Filters like W are usually called disturbance models of w.

Considering (3) and the parameterized systems K(Q) and

R(Q), (27) is equivalent to

min
Q∈RH∞

‖RoDW −QGDW‖2 . (28)

It is important to remark that the solution to (27) requires

a disturbance model W . In practice the identification of an

accurate model W is extremely difficult and often impossible,

and also, it is not clear how a solution to (27) can be adap-

tively approximated. Fortunately, (28) can be approximated

with the use of adaptive filters. This is key in the development

of the adaptive-repetitive control scheme to be introduced

later in this section.

B. Stability of the Closed-loop System with K(Q)

Similarly to the case studied in Section II, if the controller

Ko in Fig. 3 is replaced by K(Q), then under the assumption

that Ĝ = G, the sensitivity function from the disturbance w

to the output y is given by

ζK(Q) = 1−GK(Q). (29)

This implies that for stable systems Ko, D and Q, the closed-

loop system is nominally stable. Clearly, for any LTI Q,

the stability robustness of the closed-loop system can be

analyzed using classical indices, such as, gain and phase

margins.

For reasons that will become clear in the next subsection,

many times it results useful to look at the stability problem

from an alternative perspective. For that purpose, let us

consider plant additive uncertainty, i.e.,

G = Ĝ+∆G, (30)

and then, replace Ko by the new controller K(Q). Thus, the

block diagram in Fig. 3 is equivalent to the block diagram in

Fig. 5, which implies that, invoking the small gain theorem

[14], a sufficient stability condition is given by

‖∆G‖∞ ‖K(Q)‖∞ < 1. (31)

It is worth mentioning that this condition is consistent with

the feedforward stability condition based on (29), since for

the case Ĝ = G, the system is always stable.

Thus far, we have assumed that Q is a stable LTI system,

however, it is important to note that for the case in which Q

is time-varying, the condition remains essentially the same,

except for the replacement of the H∞ norm (‖ · ‖∞) by the

ℓ2-induced norm (‖ · ‖ℓ2→ℓ2
). This fact will be used in the

next subsection.
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Fig. 5. Systems ∆G and K(Q) in typical feedback configuration.

C. Proposed Adaptive Scheme

The solution to (28) can be found employing well-known

H2 control methods [15]. However, in order to apply those

methods we would need a reliable model W capable of

capturing all the relevant statistical information contained in

the disturbance signal w. A system W can be identified using

some identification method. For example, in [16] disturbance

models are identified using the n4sid subspace method.

In most applications the identification of disturbance mod-

els is challenging and often times impossible. For this reason,

it is convenient to translate the problem in (28) into an

adaptive filtering problem, solvable online by the use of algo-

rithms such as RLS (recursive least-squares) or LMS (least-

mean-squares). In this case, the standard LMS algorithm

and the inverse QR-RLS algorithm in [17] are employed

to demonstrated the proposed method in experiments. The

proposed adaptive scheme is shown in Fig. 6, where the

controller K(Q) = Ko + QD can be broken into a repetitive

part, Ko, and an adaptive part, QD.

The fundamental idea behind the scheme is that the

adaptive algorithm is run using a regressor formed by values

from the signal Dw, and not w, as in the typical minimum-

variance adaptive configurations. Thus, the periodic content

to be canceled in w is attenuated by Ko, and what is left,

Dw, is attenuated adaptively. In the experiments presented

in this paper, we introduce the constraint Q(z) = ∑
NQ

i=0 θiz
−i,

where NQ is the order of the filter Q and θi ∈R. This allows

us to enforce the stability of Q, since finite impulse response

(FIR) filters are always stable provided that the coefficients

remain bounded.

The stability arguments given in the previous section, for

the case when Q is LTI, can be easily extended to the case

when Q is time-varying. Notice that under the assumption

that Ĝ = G, the system in Fig. 6 will be ℓ2-stable for any

ℓ2-stable Q. Similarly to the LTI case, if additive uncertainty

is assumed as in (30), the system in Fig. 6 will remain ℓ2-

stable as long as the ℓ2-induced norm of K(Q) remains small

enough.

V. EXPERIMENTS

A. Description of the Experiment

The experimental effectiveness of the proposed control

scheme is demonstrated on a commercial HDD system.

The description of the HDD system and the details of the

experimental implementation are discussed in [16]. Here, we
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Ĝ --

−Ko
¾¾h

6

−Q ¾
D

h? -

?h

?

Ro
¾
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Fig. 6. Adaptive-repetitive control scheme.

focus on track-following, that is, the control objective is to

position the center of the HDD head over the center of a

HDD data track. As customary, our performance index is the

deviation of the center of the head from the center of a given

track, often called track misregistration (TMR), quantified as

T MR = 3σ , (32)

where σ is the empirical standard deviation of the position

error signal (PES), expressed as a percentage of the track

pitch.

In the experiments presented here, we use a 2-platter

(10 GB/platter) 4-head 7,200 rpm commercial HDD and a

Mathworksr xPC Target system for control with a sample-

and-hold rate of 9.36 KHz. As a baseline for adding

the disturbance rejection scheme discussed here, we use

a combination of two LTI control systems, developed and

implemented as shown in [16]. These systems are a simple

LTI controller and a LTI minimum-variance-type controller,

tuned using the inverse QR-RLS algorithm. The closed-loop

plant, resulting from the interconnection of those controllers

with the original open-loop plant of the HDD system, is G.

A model of G, labeled as Ĝ, was identified using the n4sid

algorithm. For more details see [3], [16] and [18].

B. Multiple-Period Repetitive Controller Design

The power spectral density (PSD) of the experimental

PES y, obtained using the baseline controller shows that

several sets of periodic signals are composing part of the

baseline PES y. Besides the set of signals with frequencies

multiple of 120 Hz, which is a direct consequence of the
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Fig. 7. Sensitivity function ζo for the cases one-period (120 Hz); two-
period (70 Hz, 120 Hz); two-period (120 Hz, 407 Hz); and three-period
(70 Hz, 120 Hz, 407 Hz).

rotation of the HDD platters, there are sets of signals with

frequencies multiple of 70 Hz, 407 Hz and others. In order

to target these periodic signals in the PES, four repetitive

controllers are designed, using the methodology described

in Section II and Section III. The first controller is one-

periodic repetitive aiming to cancel signals with frequencies

multiple of 120 Hz. The second controller is two-periodic

repetitive aiming to cancel signals with frequencies multiple

of 70 Hz and 120 Hz. The third controller is two-periodic

repetitive aiming to cancel signals with frequencies multiple

of 120 Hz and 407 Hz. And finally, the fourth controller

is three-periodic repetitive aiming to cancel signals with

frequencies multiple of 70 Hz, 120 Hz and 407 Hz.

In order to generate the notches that would allow us to

cancel signals with the aforementioned frequencies, we pick

internal models D(1), D(2) and D(3) with N1 = 78, N2 = 134

and N3 = 23, respectively. Notice that N1 = 78 generates

notches with an exact period of 120 Hz. However, N2 = 134

and N3 = 23 generate notches with periods of 69.8507 Hz

and 406.9565 Hz, respectively. The corresponding low-pass

zero-phase filters q1, q2, q3 are given by

q3 = q2 = q1 =
(

1−10−6
)[

2
(

2q0 −q2
0

)

−
(

2q0 −q2
0

)2
]

, (33)

with q0(z
−1,z) = 0.2z−1 +0.6+0.2z. The corresponding pa-

rameters γ1, γ2 and γ3 are given by γ3 = γ2 = γ1 = 4.5×10−7.

The filters q1, q2, q3 and the parameters γ1, γ2, γ3 were

chosen so that the stability condition in (23) is satisfied,

while achieving a reasonable good performance according

to the frequency response of the sensitivity function ζo. The

resulting sensitivity functions ζo, for all the cases considered

here, are shown in Fig. 7. Since the resulting repetitive

controllers are LTI, with the use of a model of the open-

loop system and the baseline controllers, stability robustness

can be analyzed using the classical indices minimum gain

margin (MGM) and minimum phase margin (MPM). This

TABLE I

EXPERIMENTAL RESULTS (BASELINE 3σ = 4.9896). INDEX 3σ

OBTAINED WITH THE ADAPTIVE-REPETITIVE SCHEME AT LOCATION

{HEAD 1,TRACK 20,000}, FOR CASES: ONE-PERIOD (120 HZ),

TWO-PERIOD (70 HZ, 120 HZ), THREE-PERIOD (70 HZ, 120 HZ, 407 HZ).

Algorithm / Order of Q One-period Two-period Three-period

No Filter Q 4.4176 4.2805 3.9557

Inverse QR-RLS / 16 3.9218 4.0497 3.8292

Inverse QR-RLS / 64 3.7396 3.9122 3.6979

LMS / 16 4.1380 4.1275 3.9009

LMS / 64 4.0797 4.0791 3.8972

LMS / 128 3.9617 4.0454 3.8903

LMS / 256 3.9362 4.0157 3.8871

analysis was done and in all the cases MGM > 1.48 dB and

|MPM| > 29.5 deg. The details are omitted for brevity.

C. Experimental Results

The experimental effectiveness of the proposed control

scheme is demonstrated using two sets of data. The first set of

data was obtained at a specific location of the HDD (Head 1,

Track 20,000), where several tests were performed in real-

time. Those are summarized in Table I, Fig. 8 and Fig. 9.

Fig. 8 compares the PSDs of the PES y for the cases: baseline

control (blue), three-period repetitive control (green), and

three-period adaptive-repetitive control using the inverse QR-

RLS algorithm with a filter Q of order 64 (red). There, it can

be observed that the LTI three-period repetitive controller

is capable of canceling the periodic spikes at frequencies

multiple of 70 Hz, 120 Hz and 407 Hz, while amplifying

the inter-notch regions. This inter-notch amplification is

canceled by the adaptive filter in the adaptive-repetitive

scheme in Fig. 6. In order to clearly show the improvement

in performance, Fig. 9 shows histograms comparing the PES

y obtained with the use of the baseline controller and with

the use of the adaptive-repetitive control scheme. Also using

data obtained at location {Head 1,Track 20,000}, Table I

compares the performances obtained using multiple-period

repetitive controllers using various different parameters and

in combination with the adaptive algorithms LMS and in-

verse QR-RLS.

The second set of data is summarized in Table II. There,

we show the performance index value 3σ for experiments

performed at different locations of the HDD, employing the

baseline controller, a LTI three-period repetitive controller

(70 Hz, 120 Hz, 407 Hz), and the adaptive-repetitive scheme

in Fig. 6, using the LMS and inverse QR-RLS algorithms

with filters Q of orders 64 and 256, respectively. Clearly, the

effectiveness of the proposed method is demonstrated.

VI. CONCLUSIONS

In this paper we presented a method for synthesizing
multiple-period repetitive controllers integrable to a mini-
mum variance control scheme that combines repetitive and
adaptive components. The main result presented here is a
theorem that states a particular solution to the multiple-
period repetitive control problem. The theorem was proved
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TABLE II

PERFORMANCE INDEX 3σ OF THE Position Error Signal (PES) AS PERCENTAGE OF THE TRACK WIDTH.

Head 0 Head 1

yre f = 10,000 yre f = 15,000 yre f = 20,000 yre f = 10,000 yre f = 15,000 yre f = 20,000

Baseline Controller 5.1126 5.0913 4.9632 5.1097 5.2278 4.9896

Three-period Repetitive Control 4.1795 3.9186 4.0489 4.0646 3.9709 3.9557

Adaptive-repetitive – Three-period (inv. QR-RLS / 64) 3.9814 3.7126 3.8097 3.7278 3.7546 3.6979

Adaptive-repetitive – Three-period (LMS / 256) 3.9349 3.8114 3.9066 3.8053 3.8530 3.8871
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Fig. 8. Power spectral density of the PES y for three different experiments.
Upper Plot: baseline Control. Middle Plot: three-period repetitive control
(70 Hz, 120 Hz, 407 Hz). Bottom Plot: three-period adaptive-repetitive
control.
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Fig. 9. Histogram comparing the experimental PES y, obtained with the use
of the baseline controller and with the use of the multiple-period adaptive-
repetitive control scheme (70 Hz, 120 Hz, 407 Hz).

using mathematical induction, and based on the proof, a
method for synthesizing repetitive controllers recursively was
derived. Experimental results, obtained using a hard disk
drive, demonstrate the effectiveness of the proposed method.
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[3] N. O. Pérez Arancibia, C.-Y. Lin, T.-C. Tsao, and J. S. Gibson,
“Adaptive-Repetitive Control of a Hard Disk Drive,” in Proc. 46th

IEEE Conf. on Decision and Control, New Orleans, LA, Dec. 2007,
pp. 4519–4524.

[4] B. A. Francis and W. M. Wonham, “The internal model principle of
control theory,” Automatica, vol. 12, no. 5, pp. 457–465, Sept. 1976.

[5] R. Horowitz, B. Li, and J. W. McCormick, “Wiener-filter-based Min-
imum Variance Self-tuning Regulation,” Automatica, vol. 34, no. 5,
pp. 531–544, May 1998.

[6] M. Yamada, Z. Riadh, and Y. Funahashi, “Design of Robust Repetitive
Control System for Multiple Periods,” in Proc. 39th IEEE Conf. on

Decision and Control, Sydney, Australia, Dec. 2000.
[7] S. S. Garimella and K. Srinivasan, “Application of Repetitive Control

to Eccentricity Compensation in Rolling,” ASME Journal of Dynamic

Systems, Measurement, and Control, vol. 118, no. 4, pp. 657–664,
Dec. 1996.

[8] D. H. Owens, L. M. Li, and S. P. Banks, “Multi-periodic repetitive
control system: a Lyapunov stability analysis for MIMO systems,”
International Journal of Control, vol. 77, no. 5, pp. 504–515, Mar.
2004.
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