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Abstract—The control of flexible systems is often difficult due
to the exact frequencies of the elastic modes being hard to iden-
tify. These flexible modes may change over time, or vary between
units of the same system. The variation in the modal dynamics
may cause a degradation in performance or even instabilities un-
less compensated for by the control scheme. Controllers designed
for these types of systems use notch filters for suppression, however
variation in the parameters of the flexible modes cause the need for
wide notch filters. An adaptive scheme is proposed which uses an
online estimator based on plant parameterization. Since the esti-
mator is able to identify the modal dynamics, an adaptive notch
filter is able to track an incorrectly modeled or varying flexible
mode. The adaptive notch filter can be designed narrower, adding
less phase lag at lower frequencies, thereby allowing an increase
in bandwidth and disturbance rejection capability. Simulation and
experimental verification of the adaptive mode suppression scheme
is given through the use of a laser beam pointing system. The adap-
tive scheme is compared to a nonadaptive scheme, and is able to
decrease the standard deviation of the experimentally measured
tracking error by 14% even when the flexible dynamics are un-
known.

Index Terms—Adaptive control, adaptive notch filter,
laser-beam control.

I. INTRODUCTION

F LEXIBLE dynamics occur in numerous mechanical sys-
tems where control systems are desired to maintain sta-

bility or increase tracking performance. Unless accounted for
by the control scheme, these dynamics can cause instabilities or
degradation in performance. A notch filter is sometimes used to
suppress the flexible modes, however in many applications the
modal frequencies are often uncertain and can even vary over
time creating the need for a wide notch filter. One such system
is a pointing system, where the flexible actuators may cause the
need for a notch filter. As the notch filter becomes wider it also
induces greater magnitude and phase lag at lower frequencies
resulting in a lower bandwidth system.
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One solution to such a problem is the adaptive notch filter,
a notch filter whose center frequency varies online to track the
modal frequencies of the system. The adaptive notch filter has
been studied in signal processing research [1]–[3] as well as var-
ious applications, such as the hard disk drive (HDD) [4], launch
vehicles [5], aircraft [6], and space structures [7]. The adaptive
notch filter presented in [5] is used on the model of a booster
from the Advanced Launch System (ALS) program. The least
squares estimator in the publication uses a simple undamped
resonator as the model for estimation and functions well since
the resonant mode is very pronounced. However in other appli-
cations, full plant parameterizations is necessary as the flexible
mode may not be as significant. Another strategy for the estima-
tion of the center frequency can be found in [4], where frequency
weighting functions are used. The downside is there are sev-
eral failure modes that are known and avoidance requires some
modal information a priori. A stochastic state space algorithm
for mode frequency estimation is presented in [6]; however it
relies on the injection of a probe signal which is not needed in
the scheme presented here. The indirect adaptive compensation
(IAC) scheme in [8] also requires a probe signal to complete the
estimation. The adaptive mode suppression scheme in [7] uses a
LMS algorithm to update filter coefficients and then the modal
parameters are extracted from the filter. This is opposite as to
what is being presented in this brief, where the modal parame-
ters are first estimated and then used in the adaptive notch filter.

This brief presents a feedback control scheme which makes
use of an adaptive notch filter. The adaptive notch filter is de-
signed to suppress the modal dynamics of the system while
working in harmony with another controller designed for the
rigid system, that is the system without the flexible modes. This
second controller, called the rigid-body controller, can be de-
signed using a variety of methods since the elastic dynamics
can be, for the most part, neglected in the design. In this brief,
we will present a design requirement, on the interaction of the
rigid-body control and adaptive notch filter, which ensures sta-
bility of the closed-loop adaptive system. Since the design of
each component can be done in a more separated method it
may be useful for systems where the modes are not precisely
known early in the control design process or for systems where
the modal parameters vary between production units. This brief
makes a relevant contribution when compared to past research
and publications on adaptive notch filtering for numerous rea-
sons. In the past signal processing research the adaptive notch
filters are not used in closed-loop feedback control schemes, so
the stability and performance for control is not reported or an-
alyzed. However, in this brief we present the requirements for
closed-loop stability and demonstrate performance on an exper-
imental application. Unlike past publications, we explicitly give
the design requirements for the rigid-body controller and the in-
teraction of the adaptive notch filter with such a controller. Also
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the scheme presented herein does not need persistent excitation
[9] or a probe signal, which other published schemes require.

The design procedure for the adaptive notch filter scheme
is given to serve as an example for other future designs. To
showcase the ability of the adaptive notch filter to work in a
real-time control system the laser-beam pointing experiment of
[10] will be used. In this experiment, the plant contains a single
lightly damped complex pole. This type of system is prevalent
in mechanical systems which, by design, have a flat response
below the bandwidth of the elastic modes. The adaptive notch
filter enables a higher bandwidth control system with better per-
formance, in terms of disturbance rejection capabilities. Other
methods of rigid-body control with an adaptive notch filter of
this type are a LQR controller for aircraft control in [11] and
a classical phase lead design for an HDD in [12]. It should be
noted that the complete stability analysis will be presented in
an upcoming publication and the notation used in this brief will
be very similar to that of [9]. The general adaptive notch filter
control scheme is given in Section II. The control design for the
single complex pole is presented in Section III and then simula-
tions and experiments of the design are discussed in Section IV.
Finally conclusions are drawn in Section V.

II. GENERAL ADAPTIVE NOTCH FILTER

The setup for this problem is a rigid plant with a single
unknown lightly damped flexible mode which only contains a
single pair of complex poles. A controller is designed to achieve
good performance in the presence of disturbances, which means
shaping the sensitivity and complementary sensitivity functions
appropriately. The control objective may include tracking a
certain class of reference signal by using the in-
ternal model principle. So, we design the controller to include

, which is an internal model of and is a known monic
polynomial of degree with all roots in and with no
repeated roots on the -axis. The plant takes the form

(1)

where is a mode of the plant, is the
non-modal part of the plant, and is a bounded output distur-
bance. The flexible part of the plant takes the form

(2)

where is the damping and is the natural frequency
of the mode. It is assumed that the order of is , and
since we are concerned with suppressing the flexible modes,
the non-modal part of the plant must
be stabilizable so a rigid-body controller, later denoted as ,
can be designed for the rigid system.

A. Known Parameter Case

The control scheme includes a narrow adaptive notch filter
centered at the natural frequency of the flexible pole in (1), and
a compensator designed for using any design technique

Fig. 1. Feedback system diagram for the mode suppression schemes.

Fig. 2. Feedback system diagram with the notch filter and mode expressed as
an uncertainty ����.

while, for the most part, completely neglecting the flexible dy-
namics. Here we design a controller which includes an internal
model , however this is not necessary for the adaptive
notch filter to function properly. We pose the control problem
in this format for clarity of presentation, the rigid-body control
design is not the main topic of importance in this brief. The con-
trol loop is seen in Fig. 1 and input

(3)

(4)

(5)

We assume that the rigid-body controller is proper and
realizable, and is designed such that the polynomial equation

(6)

gives a Hurwitz , which are the desired closed-loop poles
when the flexible dynamics and notch filter are neglected. The
filter in (3) is

(7)

where is the same as in (2), , and . We
would like to design the filter to fully suppress the flexible mode
at the resonant frequency, this gives us a condition that must be
met

(8)

where is the desired margin. Now treating the modes and
notch filter as uncertainty, and ignoring the disturbance, the
system can be put into the form of Fig. 2, whose characteristic
equation is

(9)
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which, due to the stable roots of , implies

(10)

Taking the above equation and substituting in the polynomials
and applying the small gain theorem the following must be sat-
isfied:

(11)

(12)

We use this form of the uncertainty in (12) for ease of the sta-
bility proof which will be presented in a future publication. It
can be shown that the tracking error is

(13)

which is a proper stable transfer function since (11) is satisfied.
Now we have

(14)

where is a term exponentially decaying to zero. Therefore the
control law will cause to converge exponentially to the set

(15)

where is an upper bound for and is a constant. It
should be noted this result is for the system when all the param-
eters are known and the requirement in (11) is met.

B. Estimation of Plant Parameters

The adaptive mode suppression scheme that is used when the
flexible dynamics are uncertain or changing will now be de-
signed. Starting with the system in (1) we have

(16)

where is the unknown mode of the plant

(17)

and is the known part of the plant. , ,
, and follow all the same assumptions made in

the known parameter case. The polynomials denoted with the
star are polynomials whose coefficients are the actual values of
the real system, which are treated as unknown. Similarly, the
parameters with a star are the actual parameters of the system.
The parametric model to estimate the unknown modal frequency
is as follows:

(18)

where is the used to represent the disturbance where

(19)

(20)

(21)

(22)

and is a monic Hurwitz polynomial of degree . The
parametric model in (18) is achieved by taking (16) and (17),
multiplying by a common denominator, collecting unknown
terms, and then making proper transfer functions by dividing
by a Hurwitz polynomial . The creation of this type of
parametric model is well documented in [9] and the exact
representation of the flexible modes in this form allows for
estimation of the unknown modal parameters.

Our goal is to estimate the modal frequency and damping. A
wide class of adaptive laws can be used to estimate the unknown
parameters, but we adopt the gradient algorithm with parameter
projection and a deadzone. Allow ,
and also some a priori known bounds on the damping and nat-
ural frequency such that and

are satisfied. These bounds are used for projec-
tion and can be determined with some knowledge of the actual
system and where the parameters may lie. The size of the bounds
only effects the robustness of the design. A deadzone modifica-
tion is added to ensure robust adaptation in the presence of the
bounded disturbance. The update equations are

if
or and
or and
otherwise

(23)

if
or and
or and
otherwise

(24)

(25)

(26)

if
if

(27)

In the above equations the overdot represents the differential
operator and the bounds are constants determined
a priori, and are also design parameters chosen
a priori. The deadzone will ensure that adaptation stops when
the estimation error is below the level of the disturbance, so that
only good information is used to update the parameters. The
above estimation law guarantees the following:

1) ;
2) ;
3) ;
4) where is a constant vector.
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C. Adaptive Control Law

The adaptive control law is formed by replacing the notch
filter in (3), which has the form of (7), with an adaptive notch
filter. The online estimates used in the adaptive notch filter come
from the online estimator and are

(28)

The adaptive control law becomes

(29)

In the above control law, the notch filter is de-
signed to cancel the unknown mode of the plant .
By denoting the polynomials with a hat we are saying the coef-
ficients are time-varying estimates which come from the online
estimator. This is done by using the estimate of the modal fre-
quency as the center frequency thereby making it an adaptive
notch filter. The filter becomes

(30)

where is the estimate of the modal frequency and the
damping ratios are set a priori using (8) as a reference.

We also must make sure that (11) is satisfied at every frozen
time , which leads to

(31)

(32)

By frozen time we mean that the time-varying coefficients of the
polynomials are treated as constants when two polynomials are
multiplied. Therefore the controller must be designed such
that (31) is always satisfied. This implies a priori knowledge of
the bounds on the unknown parameters which leads to a convex
set , that the estimator must use for projection. These
bounds, through the updating of the parameters in the adaptive
notch filter, create a convex set of possible which we
use to obtain a weight used for control design. Now, de-
note as the frozen time versions of the systems

. That is to say, the overbar versions have esti-
mated parameters that come from the set but are frozen in
time, and therefore are treated as LTI systems. We have

(33)

and a rational transfer function weight

(34)

This weight can be substituted in (31) to acquire the LTI stability
requirement as

(35)

Fig. 3. Bode plot of the open loop plant. A single decoupled axis of the FSM
experimental setup.

This requirement for stability can be achieved offline from
knowledge of the parameter bounds and the adaptive notch
filter design. This stability requirement is used in a future
publication where an analytical proof is described in which
proves boundedness of the parameters as well as convergence
of the error signal to zero. However there is no guarantee that
the estimated parameters will converge to the true values, as
this is not needed for stability. However if the reference signal
contains significant persistent excitation (PE) [9], then the
estimates will converge to the true values. In other words, the
parameters will adapt to bring the error signal close to zero,
at which point the deadzone modification will halt adaptation,
thereby freezing the estimates which may not be at the true
value.

III. CONTROL DESIGN

The adaptive notch filter scheme will now be designed for
a system with a single complex pole, which is representative
of mechanical systems with a flat frequency response up to the
frequency of a lightly damped elastic mode. This type of system
is similar to that of the MEMS fast steering mirror (FSM) which
will be used as the actuator in the simulations and experiments
described later. For this system the rigid part of the plant
is unity and the modal part is as in (17) leading to a system with
a bode plot seen in Fig. 3. For this section we will allow the
control design to be done in the Laplace domain and in the next
section the controllers will be discretized for implementation on
a digital computer.

Some fictitious stability and performance requirements are
created to show the benefit of the adaptive mode suppression
scheme. Since our goal is perfect tracking and elimination of
disturbances, the chosen performance metric will be the stan-
dard deviation of the tracking error. Therefore requirements are
levied on the closed loop sensitivity function which are a mag-
nitude of at most 55 dB at 1 Hz and a maximum magnitude
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Fig. 4. Closed-loop diagram for the experimental setup. For the non-adaptive
scheme the adaptive notch filter is replaced by a fixed notch filter and the online
estimator is removed. Here ���� is the reference signal which is equal to zero
and ���� is the measured output.

of 12 dB. Now a requirement will be added to limit the band-
width of the closed loop system, this may be necessary for a
variety of reasons. In a real implemented system used for com-
mercial use, the sampling rate of the feedback error signal may
be only slightly faster than the flexible dynamics and high fre-
quency noise may be present, so a limited bandwidth would be
desired. These factors contribute to the requirement of limiting
the closed loop complementary sensitivity to at most 60 dB at
500 Hz with an overall maximum value of 12 dB.

With these requirements in place, two controllers will be
designed and the closed loop diagram is in Fig. 4. A control
scheme utilizing an adaptive notch filter (ANF) and a scheme
with a fixed non-adaptive notch filter (NA) will be created. The
non-adaptive scheme will utilize a wide notch filter to account
for variations in the flexible mode frequency of up to 5%
and variations of the damping of up to 5%. This wider notch
filter will add phase lag at the lower frequencies and limit the
performance of the system. However the adaptive scheme will
have a much narrower notch filter, adding less phase lag and
thereby allowing for better disturbance rejection. Both of the
notch filters are displayed in Fig. 5. The frozen time adaptive
notch filter is

(36)

and the non-adaptive notch filter is

(37)

To graphically visualize the benefit of the narrower adaptive
notch filter we will go back to the stability requirement where
the notch filter and flexible mode are treated as uncertainties. If
we allow the the unknown parameters to come from the set ,
which is created from the a priori bounds on the unknown pa-
rameters, we can devise a covering function for both the adap-
tive and non-adaptive cases. First for the adaptive case we will
create the filter by using (33) and (34) and the bounds
specified by the 5% variation in natural frequency and damping.
For this we use the adaptive notch filter given in (36), which is
treated as a frozen time LTI system when is constant, and the
mode given by

(38)

Fig. 5. Bode plot of the notch filters. The narrower ANF adds less phase lag
than the non-adaptive notch filter (NA). The ANF is one where the center fre-
quency is frozen at the same value as the non-adaptive notch filter, therefore it
can be treated as LTI.

For the non-adaptive notch filter case we will construct the filter
by using

(39)

and then

(40)

where the subscript is used to denote the non-adaptive
scheme. The stability criteria in (35) can now be used in the
form of

(41)

where is the complementary sensitivity function. Plotting
the bode plots of the inverse of the filters and
in Fig. 6 shows how the adaptive system can allow an increase
in bandwidth as well as disturbance rejection. It should also be
noted that the adaptive notch filter can deal with a much larger
variation in damping since the center frequency will track the
flexible mode and suppress the mode. However the suppression
capabilities of the fixed non-adaptive notch filter decrease expo-
nentially as the actual modal frequency of the plant is displaced
from the center frequency of the notch filter.

The rigid body controller for the two cases are slightly
different, the adaptive scheme has a slightly higher gain and
faster zeros allowing for an increase in performance while
still meeting the requirements, which is permitted due to the
narrower adaptive notch filter. Both rigid body controllers
are designed to maximize performance for the given notch
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Fig. 6. Bode plot of inverse of the filters� ��� and� . The narrower ANF
has a looser constraint on the rigid body control design, when compared to the
non-adaptive notch filter (NA).

Fig. 7. Bode plot of the closed-loop sensitivity functions. The narrower ANF
allows for better disturbance rejection than the non-adaptive notch filter (NA)
due to the increase in bandwidth of the rigid body controller. The ANF can be
treated as LTI since we fix the value for the center frequency to be the same
value used in the non-adaptive notch filter, which is the nominal plant modal
frequency.

filters in their respective schemes using classical SISO design
methodologies. The rigid controllers are

(42)

(43)

where is the rigid controller for the adaptive notch
filter scheme and is the rigid controller for the non-
adaptive scheme. The sensitivity functions of each scheme is
seen in Fig. 7 where the disturbance rejection capability of the

Fig. 8. Photograph of the laser beam system.

adaptive scheme is clear. Since the adaptive notch filter is nar-
rower than the non-adaptive counterpart, the rigid controller can
be designed more aggressively causing the lower magnitude of
the sensitivity function. The closed loop bandwidth of the adap-
tive scheme is also slightly higher at 65 Hz as opposed to that
of the non-adaptive scheme which has a bandwidth of 51 Hz,
although both schemes meet the sensitivity and complementary
sensitivity function requirements that were imposed. With the
controllers and notch filters designed, using the bounds for the
unknown parameters, we can check the stability condition of
(35) using the and covering filters created
earlier. Both schemes have greater than 7 dB of gain margin,
however to meet the performance requirements and tolerance
on the flexible mode, the phase margins suffer. The non-adap-
tive scheme has a phase margin of 18 degree while in the ideal
situation, with the parameters frozen, the adaptive scheme has
a phase margin of 25 degrees. The LTI margins for the adaptive
scheme is not a realistic quantity, however it is discussed here to
show how the margins are better when a notch filter is narrower.

The online estimator is designed for the adaptive scheme in
the same way presented in the previous section. The filter
is designed to maximize the signal to noise content of the es-
timator, this can be done by designing bandpass filters in re-
gions where the flexible modal frequency is thought to occur.
The deadzone modification is the estimator will turn off estima-
tion when the estimation error becomes less than some desig-
nated preset design value. This is necessary due to the distur-
bance signal, which will cause the estimates to drift based on
incorrect estimation information.

IV. SIMULATIONS AND EXPERIMENTS

The simulations presented in this section use the dynamical
models of the laser-beam system shown in Fig. 8, where the
plant displays a lightly damped flexible mode. The details of
the experimental setup in Fig. 8 are described in [10], however,
a brief overview is given here.

As shown in the photograph in Fig. 8, a laser beam leaves the
source at position , reflects off the fast steering mirror FSM-C
at position , then reflects off the fast steering mirror FSM-D
at position and finally reaches the optical position sensor
at position . Two lenses in the optical path focus the beam
on FSM-D and the sensor. The mirrors FSM-C and FSM-D
are identical Texas Instruments (TI) MEMS mirrors used in
laser communications for commercial and defense applications.
FSM-C is the control actuator, and FSM-D is used to add dis-
turbance.

The open-loop discrete-time plant of the system is the transfer
function that maps the two-channel digital control command to
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the sampled two-channel output of the optical position sensor.
Thus open-loop plant of the system is the two-input/two-output
digital transfer function for the lightly damped fast steering
mirror FSM-C with a gain determined by the optical position
sensor and the laser path length. Output channels 1 and 2 repre-
sent horizontal and vertical displacements, respectively, of the
beam; input channels 1 and 2 represent commands that drive
FSM-C about its vertical and horizontal axes, respectively.

As shown in [10], the two channels of the system can be de-
coupled, creating two separate SISO systems. Only Channel 1
will be used in the simulations considered here, because the re-
sults of this brief pertain to a single SISO system. A model of
Channel 1, identified with a sample-and-hold rate of 5 kHz, is
shown in Fig. 3, where the lightly damped flexible mode at 127
Hz can easily be observed. Notice, that the magnitude of the fre-
quency response of Channel 1 at 0 Hz is 0 dB. This is due to the
fact that the transfer function of Channel 1 has been scaled, so
that, changes in the distances between the components in optical
path in Fig. 8 do not change the models of the system.

A slightly different configuration to the one in Fig. 8, but
with the same mirrors FSM-C and FSC-D (i.e., essentially the
same dynamics), is used for the experiments to be described
in Section IV-B. There, the effectiveness of the proposed adap-
tive mode suppression scheme is demonstrated. In this case, the
closed-loop system is run with a sampling-and-hold rate of 5
kHz. Although the sampling frequency of the system is 5 kHz,
a commercial application of the FSM may have a sampling fre-
quency that is significantly smaller, due to time associated with
the response of the detector, processing of the detector signal,
or calculation of the position error.

Since the controllers, notch filters, and estimator are all de-
signed in the continuous-time domain, they must be discretized
for implementation on the real-time system at the sampling fre-
quency of 5 kHz, since this was the given sampling rate of the
system. Other sample rates were not tested, however a sampling
rate much faster than the flexible dynamics of the system is
needed for good performance. This is done using the bilinear
transformation on both rigid controllers as well as the estimator
filters, however the non-adaptive notch filter is discretized using
the matched pole-zero technique [13]. The adaptive notch filter
is converted to a digital notch filter for use in the real-time
system by the following method. Allow

(44)

where is the sampling time. Then calculate the following
values:

(45)

(46)

(47)

(48)

(49)

(50)

and the digital notch filter becomes

(51)

Fig. 9. Simulation results for the non-adaptive scheme when the notch filter
is placed at 93% of the plant’s modal frequency. Top plot: Position output � .
Bottom plot: Tracking error. (ANF).

This filter can be implemented in a real-time system in a number
of ways. Here the filter is placed in a canonical state space
form and the states are updated using the standard discrete state
space equations. Both rigid controllers are discretized using the
same method, however the notch filters differ only slightly. The
method given here for the adaptive notch filter is very similar to
a matched pole-zero technique. Since the sampling frequency
is much faster than the center frequencies of the notch, the dis-
cretization method does not play a vital role, but instead is only
used for ease of online computation.

A. Simulations

A series of simulations are first completed using Matlab and
Simulink, where the goal is to test the adaptive notch filter
scheme before running real-time experiments. The disturbance
that will be generated with the second FSM-D in the experi-
ment is incorporated into the simulation. For the simulations
the reference signal is a slowly varying 2 Hz sinusoid with an
amplitude of 10 V. The adaptive mode suppression scheme is
compared to the non-adaptive control scheme that is described
previously, for both simulations the flexible modal frequency is
thought to be at 93% of the nominal value, therefore the notch
filters are centered at this incorrect frequency. At this amount of
variation in modal frequency, the non-adaptive scheme will be
unstable, as the notch filter is only meant to suppress a variation
of up to 5%. The time series plots of the output and tracking
error are displayed in Fig. 9, where the system begins to grow
unstable as the flexible mode is not adequately suppressed.
However, the adaptive scheme’s output and tracking error
are seen in Fig. 10. Here the system displays a large tracking
error initially as the notch center frequency is incorrect, but as
adaptation occurs the notch filter is able to suppress the mode
thereby retaining performance and stability. The estimated
modal frequency and estimation error are seen in Fig. 11.

B. Experiments

The experiments are conducted on the same day and run sev-
eral times for further verification of the results. In Fig. 12 the
time series of the error signal when the adaptive scheme is run
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Fig. 10. Simulation results for the adaptive scheme when the initial value of the
estimated modal frequency �� is placed at 93% of the plant’s modal frequency.
Top plot: Position output � . Bottom plot: Tracking error. (ANF).

Fig. 11. Simulation results for the adaptive scheme. the actual modal frequency
is 127.26 Hz. Top plot: Estimation error. Bottom plot: Estimated modal fre-
quency.

is displayed. For the first 5 s the system is open loop, so only the
disturbance created by FSM-D is seen in the error signal. The
initial estimate of the plant’s modal frequency is assumed to be
at 95% of the actual value, thereby placing the adaptive notch
filter in the incorrect location. This variation could be due to en-
vironmental effects, variations between FSMs, or degradation
over time. Since the notch filter center frequency is incorrect, the
flexible mode is excited and creates a large error shortly after the
loop is closed. Adaptation then occurs, the notch filter tracks the
modal frequency, the flexible mode is suppressed, and the error
signal attenuates. As compared to a non-adaptive scheme, when
the non-adaptive notch filter is placed perfectly (i.e., the plant
model is correct and exactly known), the adaptive scheme de-
creases the standard deviation of the error signal by 14%. This
increase in performance is due to the more aggressive rigid-body
controller associated with the narrow adaptive notch filter.

The power spectral densities (PSDs) of error signal from the
open loop system, adaptive scheme after adaptation, and non-

Fig. 12. Time series from the FSM experiment, the adaptive notch filter is ini-
tially placed at 95% of the actual modal frequency of the plant, however the
adaptive notch filter will update the center frequency online. The control loop
is closed at 5 s.

Fig. 13. PSDs computed from the error signal of the FSM experiment. The data
used is collected from the 10 s mark until the 25 s mark. Top plot: Open-loop
system, only disturbance. Bottom plot: Non-adaptive scheme and ANF.

adaptive scheme are presented in Fig. 13. The bottom plot dis-
plays the rejection of the disturbance with the adaptive scheme.
Fig. 14 shows the estimation error and estimated modal fre-
quency for the adaptive scheme. The plots are time series which
begin at 5 s into the experiment, which is the time at which the
loop is closed and the adaptive control scheme is turned on. Ini-
tially the estimated modal frequency, and therefore notch center
frequency, is incorrect. This causes the system to be unstable
and the tracking error to grow large, which in turn causes the
estimation error to grow larger than the disturbance level. This
level of excitation is sufficient enough to cause the online esti-
mator to begin adapting the parameters online. Once the level
of the error decreases below the deadzone threshold the estima-
tion is halted and the parameters remain constant. It should also
be noted that the estimated frequency does not exactly converge
to the real plant modal frequency, but this is acceptable since
the system becomes stable and the performance is improved.
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Fig. 14. Data from the adaptive scheme when the loop is closed at 5 s, the
actual modal frequency is 127.26 Hz. Top plot: Estimation error. Bottom plot:
Estimated modal frequency.

Fig. 15. PSDs computed from experimental data comparing a non-adaptive
notch filter with an incorrect center frequency (97% of nominal) and one which
is correct.

The adaptive mode suppression scheme does not guarantee that
.

Another case of the non-adaptive scheme is run, but this time
the non-adaptive notch filter’s center frequency is displaced.
The center frequency is set at 97% of the plant mode frequency
and the system remains stable, however the standard deviation
of the tracking error is increased by 10%. This is due to the
lightly damped mode being excited by the control system which
can be seen in Fig. 15. The plot shows the PSDs of the two cases,
where the plant mode at 127 Hz can be seen as a spike in the plot
due to the incorrectly placed non-adaptive notch filter.

These experimental results show that the adaptive scheme is
able to provide better performance than the non-adaptive ver-
sion even when the non-adaptive notch filter is centered exactly
on the flexible mode. With the center frequency slightly per-

turbed the non-adaptive scheme remains stable, however there
is a degradation in tracking error. The adaptive scheme can track
and adjust for such an incorrect plant model, only after estima-
tion error has sufficient information for adaptation to occur.

V. CONCLUSION

This brief presented an adaptive mode suppression scheme
which incorporates an adaptive notch filter. An estimator using
plant parameterization is used to track the modal frequency of
the flexible dynamics of the plant. This frequency estimate is
then used to update the center frequency of the adaptive notch
filter. Since the adaptive notch filter will track the flexible mode,
it can be designed narrower, which will allow for an increase
in bandwidth of the closed loop system. The adaptive scheme
is compared to a non-adaptive scheme empirically through the
use of a laser beam pointing system. The experimental setup dis-
plays a plant with a lightly damped flexible mode near the de-
sired closed loop bandwidth. Starting with incorrect parameters,
the estimator of the adaptive scheme is able to track the modal
frequency of the plant in real-time and results in the adaptive
notch filter being able to suppress the flexible mode. The ben-
efit of the narrow adaptive notch filter is seen in the improved
tracking performance of the laser beam system. This experiment
is meant to be a single example of how the adaptive mode sup-
pression scheme may be designed an implemented as a real-time
control system.
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