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a b s t r a c t

This paper introduces a new method for synthesizing multiple-period repetitive controllers. The main
innovations in the synthesis procedure presented in this article are two. The first one is that this technique
yields a solution compatible with the integration of the computed multiple-period repetitive controller
into a minimum-variance adaptive control scheme. The second innovation is that the solution is period-
recursive, reducing the complexity of controller synthesis considerably when compared with other
methods available in the literature. To exemplify the synthesis procedure, a multiple-period repetitive
controller is designed and integrated into an adaptive–repetitive control scheme used in the track-
following control of a commercial hard disk drive. Experimental results show the effectiveness of the
presented approach.

© 2010 Elsevier Ltd. All rights reserved.
1. Introduction

Repetitive control (Hara, Yamamoto, Omata, & Nakano, 1998;
Inoue, Nakano, Kubo, Matsumoto, & Baba, 1981; Tomizuka, Tsao,
& Chew, 1989) has been demonstrated to be very effective in
rejecting disturbances when implemented on systems affected
by periodic disturbances, such as, hard disk drives (HDD), electric
motors and generators, other rotating machines, and satellites
(Broberg & Molyet, 1992a,b; Liang, Green, Weiss, & Zhong, 2002;
Longman, Yeol, & Ryu, 2006; Pérez Arancibia, Lin, Tsao, & Gibson,
2007a; Senjyu, Miyazato, & Uezato, 1995; Yamada, Riadh, &
Funahashi, 1999). Also, repetitive control has been shown to be
an appropriate tool when applied to periodic tracking problems
in power electronics, manufacturing and robotics (Cosner, Anwar,
& Tomizuka, 1990; Costa-Castelló, Griñó, & Fossas, 2004; Ratcliffe,
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Hätönen, Lewin, Rogers, & Owens, 2006; Tsai, Anwar, & Tomizuka,
1988; Zhou & Wang, 2003; Zhou et al., 2007). In both kinds
of problems, disturbance rejection and tracking, it is not rare
to encounter applications where controllers capable of dealing
with signals composed of multiple periods are required. Common
examples are electromechanical systems containing multiple
gears. This paper is devoted to the development of a new method
for synthesizing repetitive controllers capable of rejecting multi-
periodic output disturbances affecting the plant to be controlled.
The main feature of the method introduced here is that it

produces multiple-period controllers suitable for integration into
the combined adaptive–repetitive control scheme presented in
Pérez Arancibia et al. (2007a), which is based on the notions of
internal model (Francis & Wonham, 1976) and adaptive minimum-
variance regulation (Horowitz, Li, & McCormick, 1998). The first
part of this paper deals with the reformulation of the original
disturbance rejection control problem as a polynomial algebraic
one, and also, with finding an explicit analytical solution for it.
In general, the existence of a solution with an explicit analytical
expression does not guarantee simple computability. For this
reason, the second part of this paper presents the development of a
recursive algorithm that reduces significatively the complexity of
control synthesis.
Previous works have addressed the problem of multiple-period

repetitive control, fromboth theoretical and practical perspectives,
(e.g., Garimella & Srinivasan, 1996; Krishnamoorthy & Tsao, 2005;
Owens, Li, & Banks, 2004; Owens, Tomas-Rodriguez, Hatönen,
& Li, 2006; Yamada et al., 1999; Yamada, Riadh, & Funahashi,
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Fig. 1. LTI plant G and output disturbancew.

2000). However, those solutions are not easily integrable into the
scheme presented in Pérez Arancibia et al. (2007a), considered
here. For that reason, in this work we introduce an alternative
approach, which extends the methods for designing one-period
adaptive–repetitive controllers in Pérez Arancibia et al. (2007a)
to the multi-periodic case, following the ideas and guidelines
in Åström and Wittenmark (1984), Tomizuka (1987), Tomizuka
et al. (1989) and Tsao and Tomizuka (1994). Experimental results
obtained using a commercial HDD demonstrate the effectiveness
of the resulting control synthesis method.
The rest of the paper is organized as follows. Section 2 re-

views some fundamentals concepts of repetitive control. Section 3
presents the main contribution of this paper, which is a new
method for synthesizing multiple-period repetitive controllers.
Section 4 describes the multiple-period adaptive–repetitive con-
trol scheme to which the controller solution in Section 3 can be in-
tegrated to. Section 5 presents experimental results. Finally, some
conclusions are given in Section 6.

Notation.

• z−1 denotes the delay operator, i.e., for a signal x, z−1x(t) =
x(t − 1) and conversely zx(t) = x(t + 1). Notice that since
some of the systems involved in this paper are time-varying,
here, z is not necessarily the complex variable associated to the
z-transform.
• RH∞ denotes the set containing all the LTI systems that are
rational and stable as defined in Zhou, Doyle, and Glover (1996).
• ‖ · ‖2 denotes the standard H2 norm of a LTI system.
• ‖ · ‖∞ denotes the standard H∞ norm of a LTI system.
• | · | denotes the standard module of a complex number.
• The upper index (n) is used to denote the recursion number n in
a recursive algorithm. This does not denote an exponent.
• For a generic discrete random process y, a realization of y is
denoted by y.
• N denotes the set of positive integer numbers.R denotes the set
of real numbers.

2. Preliminaries on repetitive control

2.1. Repetitive control for disturbance rejection

In this section, we review some fundamental ideas on one-
period repetitive control that will be used later in this paper.
First, consider the block diagram in Fig. 1. There, G is a stable LTI
system and w is a disturbance considered to be mostly formed by
a combination of sinusoidal sequences with frequencies multiple
of a fundamental one. If the original plant system is unstable, it is
assumed that it can be stabilized by LTI feedback control.
To begin with, we describe a repetitive control method for

feedforward disturbance rejection in which the signal w is
assumed to be available for measurement. This is a design
assumption, since in practice w can be estimated but not directly
measured. Also, it is assumed that the fundamental frequencies of
the periodic signals forming part ofw are a priori known. Thus, the
natural control goal is the synthesis of a stable feedforward filter K ,
such that, the frequency response of the LTI system1−KG is zero at
the same periodic frequencies of the sinusoidal signals composing
w. This approach results in the block diagram in Fig. 2, where

y = w − GKw = (1− GK)w. (1)
Fig. 2. Feedforward output disturbance rejection scheme.

Notice that the problem posed as in Fig. 2 becomes a feedforward
tracking control problem. It is immediate that for the ideal
case where G is minimum phase with relative degree 0, the
best choice is to pick K = G−1. However, it is not unusual to
encounter discrete-time systems, obtained from sample-and-hold
equivalence of continuous-time systems, that have unstable zeros.
Thus, as in Tsao (1994), a possible design choice is to select a
desired model M , and then find a minimizing K of some system
norm of M − GK , for example, the H∞ norm or the H2 norm.
Another option, the one chosen here as in Pérez Arancibia et al.
(2007a), is to define an error transfer function E = 1 − GK and
then force the frequency response of E to be zero periodically at
certain desired frequencies. This objective is achievable by using
the polynomial designmethods in Åström andWittenmark (1984),
following the general guidelines presented in Tomizuka et al.
(1989) and Tomizuka (1987). The main idea is to enforce an error
transfer function with the form E = RD, where D can be thought
of as an internal model for the disturbance w, and R is an a priori
unknown stable transfer function. For the one-periodic class of
signals considered in this section, the internal model is chosen to
be

D = 1− qz−N , (2)

where q is a zero-phase low-pass filter and N is the period of the
periodic disturbance to be attenuated.
The filter q will allow us some flexibility over the frequency

range of disturbances to be canceled while maintaining stability.
The filter D has a combed shape with notches matching the
frequencies of the periodic signals forming part of w. Thus, a filter
K that makes the frequency response of E zero at desired periodic
frequencies can be computed by solving the Diophantine equation

RD+ KG = 1, (3)

where R and K are the unknowns.
Now, we briefly discuss the existence of solutions for (3). First,

notice that (3) can be rearranged as

bR (aKaGbD)+ bK (aRaDbG) = aKaGaRaD, (4)

where the polynomial numerators are denoted by the symbol b,
the polynomial denominators by the symbol a and the sub-indices
indicate the corresponding transfer function in (3). It is immediate
from Åström and Wittenmark (1984) and references therein, e.g.,
Kučera (1979), that for given polynomials aG, bD, aD and bG and
chosen polynomials aK and aR, (4) has a solution if and only if the
greatest common factor of aKaGbD and aRaDbG divides aKaGaRaD.
In general if this condition is satisfied, we say that G and D are
coprime.
As shown in Tomizuka et al. (1989) if a solution pair {Ro, Ko}

is found, then (3) characterizes a whole family of stabilizing
internal model based repetitive controllers. As in Pérez Arancibia
et al. (2007a), following the guidelines in Tomizuka (1987) and
Tomizuka et al. (1989) a method for finding a particular solution
pair {Ro, Ko} is presented here. The general methodology of
Tomizuka (1987) and Tomizuka et al. (1989) is also employed in
Yamada et al. (2000) in the context of multiple-period repetitive
control. The method starts by separating G into its minimum and
non-minimum phase parts, denoted by G+ and G− respectively.
Thus,

G =
B
A
=
B+B−
A
= G+G−,

G+ =
B+
A
, G− = B−.

(5)
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Fig. 3. Estimation of w and repetitive control scheme. G: true plant; Ĝ: identified
model of G; Ko: repetitive controller; w: output disturbance; ŵ: online estimate of
w.

Where all the zeros of B+ are stable, and all the zeros of B− are
unstable. Often, B+ and B− are referred as the cancelable and
uncancelable parts of the numerator B of G, respectively. Now,
substituting (5) into (3) we can write

RD+ κG− = 1, κ = KG+. (6)

Among the infinity many solutions to (6) it is verifiable by simple
algebraic manipulations that one of the solutions is given by

Ro =
1

1− (1− γG∗−G−)qz−N
,

κo = qγG∗−z
−NRo, Ko = κoG−1+ .

(7)

Here, G∗
−
is defined as G∗

−
(z−1) = G−(z), and 0 < γ ∈ R. From this

point onwards, in block diagrams and equations we employ the
symbols Ko and Ro, under the understanding that those correspond
to the specific solution in (7).
The block diagram in Fig. 2 assumes that the signal disturbance

w is available for measurement. However, in practice w has to
be estimated online according the diagram in Fig. 3, where ŵ is
an estimate of w and Ĝ is an identified model for the plant G.
Clearly, when the estimation scheme shown in Fig. 3 is employed,
the feedforward disturbance cancelation filter Ko becomes part of
a feedback controller υo computable as

υo =
−Ko
1− KoĜ

. (8)

It is immediately clear that being υo a SISO LTI controller, its
stability and performance can be analyzed using all the tools of
classical control, such as, gain and phase margins, along with the
use of sensitivity functions. In this case, we are interested on the
output disturbance sensitivity function

ζo =
1

1− Gυo
. (9)

Notice that under the assumption Ĝ = G

ζo = 1− GKo, (10)

which is the feedforward mapping from w to y shown in Fig. 2.
This implies that the closed-loop performance is not altered by
the estimation process, as long as, the model Ĝ is an exact
representation of the true plant G.
The previous development establishes that the closed-loop

system will be stable for stable plants G and Ko under the
assumption that Ĝ = G. Thus, we need a method to ensure that
the design algorithm produces a stable Ko. This is discussed in the
next subsection.
Fig. 4. Representation of Ro as a typical feedback configuration.

2.2. Nominal stability analysis

In order to have a nominally stable closed-loop system, all what
needs to be done is to ensure that the design algorithm yields a
stable controller Ko. Recalling the definition of Ko in (7), notice that
Ko is formed by themultiplication of the systems qγG∗−z

−N , Ro, and
G−1+ . By definition G

−1
+ is stable. The system qγG∗−z

−N is stable and
causal provided that q is stable and that N is large enough. Thus,
Ko will be stable as long as Ro is stable. Here, we state a sufficient
condition for the stability of Ro, which is based on the small gain
theorem (Dahle & Diaz-Bobillo, 1995). First, notice that Ro can be
represented by the block diagram in Fig. 4,whereN = Na+Nb, such
that, z−Na and z−Nb make the systems qz−Na and

(
1− γG∗

−
G−
)
z−Nb

causal respectively.
The small gain theorem implies that a sufficient condition for

asymptotic stability is∥∥(1− γG∗
−
G−
)
z−Nb

∥∥
∞

∥∥qz−Na∥∥
∞
< 1, (11)

which can be translated into

|1− γG∗
−
(ejθ )G−(ejθ )| <

1
|q(ejθ )|

, ∀θ ∈ [0, π]. (12)

In (12) the real number γ can be thought of as a stability and
performance tuning parameter. It is important to emphasize that
when (12) is satisfied, the resulting controller Ko is stable and
consequently the closed-loop system is stable as well. The systems
involved are LTI, therefore, an appropriate way to analyze stability
robustness is the use of the notions of gain andphasemargins, from
classical control theory. This approach is employed in the design
examples to be presented later in this paper.

3. Multiple-period repetitive control

3.1. Proposed controller design method

In this subsection we introduce the main contribution of this
paper, which is a new method for synthesizing multiple-period
repetitive controllers. The design method for synthesizing one-
period repetitive controllers presented in the previous section
can be integrated into a combined adaptive–repetitive controller
scheme to be presented in Section 4. In order to design a multiple-
period adaptive–repetitive controller with the same capability, we
need to solve (6) with a corresponding multiple-period internal
model D. From the internal model principle it follows that for
targeting L different periods, a suitable L-period D is given by

D =
L∏
k=1

1− qkz−Nk . (13)

Thus, the next step is to solve (6) with the internal model in (13).
In order to accomplish that, first we need to define some concepts
to be used later.

Definition 1. An r-combination of a set is a subset of size r . For
example, for the set {a, b, c}, we have the following three 2-
combinations: {a, b}, {a, c} and {b, c}.
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Definition 2. For a LTI system G−, exponentials are defined as
follows: G0

−
= 1 and Gk

−
= G−G− · · ·G−, k times.

Definition 3. For a number k ∈ N, the system fk is defined as

fk =
G∗
−
qkγkz−Nk

1− (1− γkG∗−G−)qkz−Nk
, (14)

where qk is a zero-phase low-pass filter, 0 < γk ∈ R, and Nk ∈ N.

With the use of the previous definitionswe state a theorem that
will serve as a guideline for synthesizingmultiple-period repetitive
controllers.

Theorem 1. A particular solution to the L-period problem is given by

Ro =
L∏
k=1

1
1− (1− γkG∗−G−)qkz−Nk

(15)

and by

κo =

L∑
k=1

∑
s∈Sk

(−1)k+1Gk−1
−
Fks, Ko = κoG−1+ , (16)

with

Fks =
k∏
j=1

fsj , (17)

where s is a vectorial index s = {s1, . . . , sk} ∈ Nk and Sk is the set
that contains all the k-combinations of the set {1, 2, . . . , k, . . . , L},
and the functions fsj are computed according to (14).

Proof. Notice that relation (16) holds if and only if the system
κ
(n+1)
o for the (n+1)-period case can be computed recursively from
the system κ (n)o for the n-period case as

κ (n+1)o = κ (n)o − κ
(n)
o G−fn+1 + fn+1, (18)

with κ (1)o given by (7). Notice that the superscripts in parentheses,
(n + 1), (n), etc., refer to the recursion number and they do not
denote exponentials as in Definition 2.
Also, it is immediate that

R(n+1)o =
R(n)o

1− (1− γn+1G∗−G−)qn+1z−Nn+1
, (19)

with R(1)o given by (7). Thus, having the solution given by (18) and
(19) a recursive form, this is proven usingmathematical induction.

• For n = 1: It follows immediately from (7).
• For n+ 1 assuming the solution for n: What needs to be shown
is that relations (18) and (19) satisfy

R(n+1)o D(n+1) + κ (n+1)o G− = 1, (20)

provided that

R(n)o D
(n)
+ κ (n)o G− = 1. (21)

To show that (18), (19) and (21) imply (20), the right side of (18)
and the right side of (19) are replaced into the left side of (20).
Thus, we obtain

R(n)o D(n) + κ
(n)
o G−

1− (1− γn+1G∗−G−)qn+1z−Nn+1

−
(R(n)o D(n) + κ

(n)
o G−)qn+1z−Nn+1 − γn+1G∗−G−qn+1z

−Nn+1

1− (1− γn+1G∗−G−)qn+1z−Nn+1
.

(22)
Now, noticing (21), it follows that the numerator and denom-
inator in (22) are identical, then (20) follows, and therefore,
(15) and (16) follow as well, which completes the proof of
Theorem 1. �

Remark 1. It is important to remark that this proof comprises the
two main contributions of the paper. The first one is that this
mathematical proof shows that the proposed pair {Ro, Ko} in (15),
(16) and (17) is in fact a particular solution to the Diophantine
equation in (3) for the internal model D in (13). The second one is
that being the proof constructive, relation (18) gives us a recursive
method for synthesizing controllers for an arbitrary number of
periods. From a practical viewpoint this is very important, since
otherwise, the synthesis and experimental tuning of multiple-
period repetitive controllers would be extremely difficult due to
the great number of parameters that would be necessary to choose
simultaneously.

In the following paragraphs we show examples aimed to
explain the controller synthesizing process.

Example 1. Consider a generic case with L = 3. The computation
of R(3)o is immediate from (15). The computation of κ

(3)
o is done as

follows.
To begin with, we compute the systems defined by (17). For

k = 3, the only 3-combination of the set {1, 2, 3} is {1, 2, 3}, then
S3 = {{1, 2, 3}}, and therefore, we have

F3{1,2,3} = f1f2f3.

For k = 2, the 2-combinations of the set {1, 2, 3} are {1, 2}, {1, 3}
and {2, 3}, then S2 = {{1, 2}; {1, 3}; {2, 3}}, and therefore,we have

F2{1,2} = f1f2; F2{1,3} = f1f3; F2{2,3} = f2f3.

For k = 1, the 1-combinations of the set {1, 2, 3} are {1}, {2} and
{3}, then S1 = {{1}; {2}; {3}}, and therefore, we have

F1{1} = f1; F1{2} = f2; F1{3} = f3.

Now, we compute the interior sums in (16). For k = 3, the interior
sum is∑
s∈S3

F3s = f1f2f3.

For k = 2, the interior sum is∑
s∈S2

F2s = f1f2 + f1f3 + f2f3.

For k = 1, the interior sum is∑
s∈S1

F1s = f1 + f2 + f3.

Thus, κ (3)o is given by

κ (3)o = f1 + f2 + f3 − G−(f1f2 + f1f3 + f2f3)+ G
2
−
f1f2f3.

Remark 2. Notice that given that the vectorial indices s are formed
using the concept of r-combination, the order of the elements in s is
irrelevant, and therefore, permutations of the elements in s do not
change the index. For example, consider S2 in Example 1. There,
if the second index in S2, {1, 3}, is replaced by {3, 1}, the result
remains invariant since F2{3,1} = f3f1 = f1f3 = F2{1,3}.

As stated in Remark 1, relation (18) gives us a method for
synthesizing repetitive controllers with any number of periods
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recursively. This is illustrated with the following example.

Example 2. We consider the same problem that in Example 1, but
this time, we solve it recursively. To begin with, notice that

κ (1)o = f1.

Then, the second recursion is given by

κ (2)o = f1 − f1G−f2 + f2.

And finally, the third recursion solves the problem as

κ (3)o = f1 − f1G−f2 + f2 − (f1 − f1G−f2 + f2)G−f3 + f3
= f1 + f2 + f3 − G−(f1f2 + f1f3 + f2f3)+ G2−f1f2f3.

3.2. Nominal stability analysis

The first thing to notice is that the controller Ko is formed by
summations and products of transfer functions fk, k = 1, . . . ,
L with themselves and with the plant G−. Therefore, if each
transfer function in the set {f1, f2, . . . , fL} is stable, then the
resulting controller Ko will be stable as well. Thus, following
the development in the previous section, it is immediate that a
sufficient condition for stability is∣∣1− γkG∗−(ejθ )G−(ejθ )∣∣ < 1∣∣qk(ejθ )∣∣ , ∀θ ∈ [0, π]

for k = 1, . . . , L. (23)

This condition might look conservative. However, in the experi-
mental section, we show that this is an appropriate guideline for
design.

4. An adaptive–repetitive control scheme

4.1. Repetitive and minimum-variance control

The principal reason for solving the repetitive control problem
as in the previous sections is that this method allows us to
formulate a H2 control problem, which can be approximated by
the adaptive scheme introduced in Pérez Arancibia et al. (2007a),
described here. To begin with, let us consider an arbitrary rational
LTI asymptotically stable filter Q , i.e., Q ∈ RH∞. Also, let

R(Q ) = Ro − QG, (24)
K(Q ) = Ko + QD. (25)

It is clear that systems R(Q ) and K(Q ) in (24) and (25) define an
entire family of solutions to theDiophantine equation in (3). Notice
that R(Q ) and K(Q ) belong to RH∞ for all Q ∈ RH∞, provided that
D and G are stable.
The previous parametrization allows us to formulate a new

control problem as an optimization one. Specifically, wewould like
to minimize the variance of the system output random variable
y(k)∀k. Notice that from this perspective, the sequence y, in Fig. 2
and other figures, is a realization of the random process y. Now,
let y be a stationary mean-ergodic and covariance-ergodic random
process for any given stable LTI filterQ . Then, the problembecomes

min
Q∈RH∞

E{y2(k)}. (26)

Notice, that if E{y2(k)} = σ 2, the ergodicity assumption implies
that limN→∞ 1

N

∑N
k=0 y

2(k) = σ 2, with probability 1. Also, it is
verifiable that (26) is equivalent to the H2 problem

min
Q∈RH∞

‖W − GK(Q )W‖2 , (27)
Fig. 5. Systems∆G and K(Q ) in typical feedback configuration.

whereW is a stable filter thatmaps a stationary, white, zero-mean,
unit-variance random sequence to the disturbance w. Filters like
W are usually called disturbance models ofw. Considering (3) and
the parameterized systems K(Q ) and R(Q ), (27) is equivalent to

min
Q∈RH∞

‖RoDW − QGDW‖2 . (28)

It is important to remark that the solution to (27) requires a
disturbance modelW . In practice the identification of an accurate
modelW is extremely difficult and often impossible, and also, it is
not clear how a solution to (27) can be adaptively approximated.
Fortunately, (28) can be approximated with the use of adaptive
filters. This is key in the development of the adaptive–repetitive
control scheme to be introduced later in this section.

4.2. Stability of the closed-loop system with K(Q )

Similarly to the case studied in Section 2, if the controller Ko in
Fig. 3 is replaced by K(Q ), then under the assumption that Ĝ = G,
the sensitivity function from the disturbance w to the output y is
given by

ζK(Q ) = 1− GK(Q ). (29)

This implies that for stable systems Ko, D and Q , the closed-loop
system is nominally stable. Clearly, for any LTI Q , the stability
robustness of the closed-loop system can be analyzed using
classical indices, such as, gain and phase margins.
For reasons that will become clear in the next subsection, many

times it results useful to look at the stability problem from an
alternative perspective. For that purpose, let us consider plant
additive uncertainty, i.e.,

G = Ĝ+∆G, (30)

and then, replace Ko by the new controller K(Q ). Thus, the block
diagram in Fig. 3 is equivalent to the block diagram in Fig. 5, which
implies that, invoking the small gain theorem, a sufficient stability
condition is given by

‖∆G‖∞ ‖K(Q )‖∞ < 1. (31)

It is worth mentioning that this condition is consistent with the
feedforward stability condition based on (29), since for the case
Ĝ = G, the system is always stable.
Thus far, we have assumed that Q is a stable LTI system,

however, it is important to note that for the case in which Q is
time-varying, the condition remains essentially the same, except
for the replacement of the H∞ norm (‖ · ‖∞) by a chosen induced
norm. The `2-induced norm (‖ · ‖`2→`2 ) or the `∞-induced norm
(‖ · ‖`∞→`∞ ), for example.
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4.3. Proposed adaptive scheme

The solution to (28) can be found employing well-known H2
control methods (Zhou et al., 1996). However, in order to apply
those methods we would need a reliable model W capable of
capturing all the relevant statistical information contained in the
disturbance signal w. A system W can be identified using some
identification method. For example, in Pérez-Arancibia, Tsao, and
Gibson (2010) disturbance models are identified using the n4sid
subspace method in Van Overschee and De Moor (1996).
In most applications the identification of disturbance models

is challenging and often times impossible. For this reason, it is
convenient to translate the problem in (28) into an adaptive
filtering problem, solvable online by the use of algorithms such
as RLS (recursive least-squares) or LMS (least-mean-squares). In
this case, the standard LMS algorithm and the inverse QR-RLS
algorithm in Sayed (2003) are employed to demonstrate the
proposed method in experiments. The proposed adaptive scheme
is shown in Fig. 6, where the controller K(Q ) = Ko + QD can be
broken into a repetitive part, Ko, and an adaptive part, QD.
The fundamental idea behind the scheme in Fig. 6 is that the

adaptive algorithm is run using a regressor formed by values
from the signal Dw, and not w, as in the typical minimum-
variance adaptive configurations. Thus, the periodic content to
be canceled in w is attenuated by Ko, and what is left, Dw, is
attenuated adaptively. In the experiments presented in this paper,
we introduce the constraint Q (z) =

∑NQ
i=0 θiz

−i, where NQ is the
order of the filter Q and θi ∈ R. This allows us to enforce the
stability of Q , since finite impulse response (FIR) filters are always
stable provided that the coefficients remain bounded.
The stability arguments given in the previous section, for the

case when Q is LTI, can be extended to the case when Q is time-
Fig. 6. Adaptive–repetitive control scheme.

varying. Notice that under the assumption that Ĝ = G, the system
in Fig. 6 will be `2-stable for any `2-stable Q and `∞-stable for
any `∞-stable Q . Similarly to the LTI case, if additive uncertainty
is assumed as in (30), the system in Fig. 6 will remain `2-stable
(or `∞-stable) as long as the `2-induced (or correspondingly the
`∞-induced) norm of K(Q ) remains small enough. Noticing that
the adaptive system in Fig. 6 falls in the category of controllers
knownas adaptive–inverse schemes inWidrowandWalach (1996)
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Fig. 8. Power spectral density of the PES y for three different experiments.
Upper Plot: baseline control. Middle Plot: three-period repetitive control (70, 120,
407 Hz). Bottom Plot: three-period adaptive–repetitive control (70, 120, 407 Hz).
(For interpretation of the references to colour in this figure legend, the reader is
referred to the web version of this article.)

and Widrow and Stearns (1985), and as self-tuning regulators in
Horowitz et al. (1998) and Horowitz and Li (1996), it is possible to
extend the stability and convergence analyses presented in those
works to the case in Fig. 6, using the available adaptive control
and filtering theory in textbooks (Goodwin & Sin, 1984; Ioannou
& Fidan, 2006; Ljung & Söderström, 1983; Sayed, 2003; Widrow &
Walach, 1996).
Table 1
Experimental Results: 3σ index obtained with the adaptive–repetitive scheme at
Head 1, Track 20,000 (baseline 3σ = 4.9896).

Algorithm/order of Q 1-period 2-period 3-period

No filter Q 4.4176 4.2805 3.9557
Inverse QR-RLS/16 3.9218 4.0497 3.8292
Inverse QR-RLS/64 3.7396 3.9122 3.6979
LMS/16 4.1380 4.1275 3.9009
LMS/64 4.0797 4.0791 3.8972
LMS/128 3.9617 4.0454 3.8903
LMS/256 3.9362 4.0157 3.8871

5. Experiments

5.1. Description of the experiment

The experimental effectiveness of the proposed control scheme
is demonstrated using a commercial HDD system. The descrip-
tion of the HDD system and the details of the experimental
implementation are discussed in Pérez-Arancibia et al. (2010).
Generally speaking, a HDD is a mechatronic device that uses ro-
tating platters to store data. Information is recorded on and read
from concentric cylinders or tracks by read–write magnetic trans-
ducers called heads that fly over the magnetic surfaces of the HDD
platters. The position of the heads over the platters is changed by
an actuator that consists of a coil attached to a link, which pivots
about a ball bearing. This actuator connects to the head by a steel
leaf called suspension (Abramovitch & Franklin, 2002; Messner &
Ehrlich, 2001).
The control objective is to position the center of the head

over the center of a data track. Thus, the typical measure of
HDD tracking performance is the deviation of the center of the
head from the center of a given track, which is often called track
misregistration (TMR) (Messner & Ehrlich, 2001). A common index
to quantify TMR is 3σ , where σ is the empirical standard deviation
of the position error signal (PES). It is common to express 3σ as
a percentage of the track pitch (Messner & Ehrlich, 2001), which
must be less than 10% in order to be considered acceptable. TMR
values larger than this figure will produce excessive errors during
the reading and recording processes. In the experiments presented
here we used a 2-platter (10 GB/platter) 4-head 7200 rpm
commercial HDD and aMathworks r© xPC Target system for control
with a sample-and-hold rate of approximately 9.36 kHz.
In the experiments to be described in the last subsection of

the paper, we use a combination of two LTI controllers, developed
and implemented in Pérez-Arancibia et al. (2010) and Pérez
Arancibia, Tsao, and Gibson (2007b), as a baseline for adding the
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Table 2
Performance index 3σ of the Position Error Signal (PES) as percentage of the track width.

Head 0 Head 1
Track 10,000 Track 15,000 Track 20,000 Track 10,000 Track 15,000 Track 20,000

Baseline controller 5.1126 5.0913 4.9632 5.1097 5.2278 4.9896
1-period repetitive control 4.3546 4.2957 4.1964 4.3157 4.2970 4.4176
2-period repetitive control 4.4031 4.1823 4.2438 4.2381 4.1765 4.2805
3-period repetitive control 4.1795 3.9186 4.0489 4.0646 3.9709 3.9557
Adapt.-rep.—1-period (inv. QR-RLS/64) 3.9585 3.8223 3.8255 3.7699 3.9311 3.7396
Adapt.-rep.—2-period (inv. QR-RLS/64) 4.1138 3.9149 4.0257 3.9616 3.9473 3.9122
Adapt.-rep.—3-period (inv. QR-RLS/64) 3.9814 3.7126 3.8097 3.7278 3.7546 3.6979
Adapt.-rep.—1-period (LMS/256) 4.1694 4.0317 4.1034 4.0438 3.9381 3.9362
Adapt.-rep.—2-period (LMS/256) 4.1765 4.0709 4.1276 3.9959 4.0223 4.0157
Adapt.-rep.—3-period (LMS/256) 3.9349 3.8114 3.9066 3.8053 3.8530 3.8871
disturbance rejection scheme discussed here. These are a simple
LTI controller and a LTI minimum-variance-type controller, which
was tuned using the inverse QR-RLS algorithm. The closed-loop
plant, resulting from the interconnection of those controllers with
the original open-loop plant of the HDD system, is G. A model of
G, labeled as Ĝ, was identified using the n4sid algorithm. For more
details see Pérez-Arancibia et al. (2010) and Pérez Arancibia et al.
(2007a,b).

5.2. Multiple-period repetitive controller design

The power spectral density (PSD) of the experimental PES y,
obtained using the baseline controller shows that several sets
of periodic signals are composing part of the baseline PES y.
Besides the set of signals with frequencies multiple of 120 Hz,
which is a direct consequence of the rotation of the HDD platters,
there are sets of signals with frequencies multiple of 70, 407 Hz
and others. In order to target these periodic signals in the PES,
four repetitive controllers are designed, using the methodology
described in Sections 2 and 3. The first controller is one-periodic
repetitive designed to cancel signals with frequencies multiple of
120 Hz. The second controller is two-periodic repetitive designed
to cancel signals with frequencies multiple of 70 and 120 Hz.
The third controller is two-periodic repetitive designed to cancel
signals with frequencies multiple of 120 and 407 Hz. And finally,
the fourth controller is three-periodic repetitive designed to cancel
signals with frequencies multiple of 70, 120 and 407 Hz.
In order to generate the notches that would allow us to cancel

signals with the aforementioned frequencies, we pick internal
models D(1), D(2) and D(3) with N1 = 78, N2 = 134 and N3 = 23,
respectively. Notice that N1 = 78 generates notches with an exact
period of 120 Hz. However, N2 = 134 and N3 = 23 generate
notches with periods of 69.8507 Hz and 406.9565 Hz, respectively.
The corresponding low-pass zero-phase filters q1, q2 and q3 are
given by

q3 = q2 = q1 =
(
1− 10−6

) [
2
(
2q0 − q20

)
−
(
2q0 − q20

)2]
, (32)

with

q0(z−1, z) = 0.2z−1 + 0.6+ 0.2z. (33)
The corresponding parameters γ1, γ2 and γ3 are given by γ3 =
γ2 = γ1 = 4.5× 10−7.
The filters q1, q2, q3 and the parameters γ1, γ2, γ3 were chosen

so that the stability condition (23) is satisfied, while achieving a
reasonable good performance according to the frequency response
of the sensitivity function ζo. The resulting sensitivity functions ζo,
for all the cases considered here, are shown in Fig. 7. Since the
resulting repetitive controllers are LTI, with the use of a model
of the open-loop system and the baseline controllers, stability
robustness can be analyzed using the classical indices minimum
gain margin (MGM) and minimum phase margin (MPM). This
analysis was done and in all cases MGM > 1.48 dB and |MPM| >
29.5 deg. The details are omitted for the sake of brevity.
5.3. Experimental results

In this subsection we show experimental results that provide
evidence of the effectiveness of the proposed approach, using
two sets of data. The first set of data was obtained at a specific
location of the HDD (Head 1, Track 20,000), where several tests
were performed in real time. These are summarized in Table 1 and
Figs. 8–10. Fig. 8 compares the PSDs of the PES y for the cases in
which the system is under baseline control (blue), three-period
repetitive control (green), and three-period adaptive–repetitive
control using the inverse QR-RLS algorithm with a filter Q of
order 64 (red). There, it can be observed that the LTI three-period
repetitive controller is capable of canceling the periodic spikes
at frequencies multiple of 70, 120 and 407 Hz, while amplifying
the inter-notch regions. This inter-notch amplification is canceled
by the adaptive filter in the adaptive–repetitive scheme in Fig. 6.
Details of this phenomenon can be observed in Fig. 10, which
shows close-ups of a plot that compares the PSDs of the PESs y
for the three experimental cases shown separately in Fig. 8. In
order to clearly show the improvement in performance, Fig. 9
shows histograms comparing the PES y obtained with the use of
the baseline controller and with the use of the adaptive–repetitive
control scheme. Also using data obtained at location {Head 1,
Track 20,000}, Table 1 compares the performances obtained
usingmultiple-period repetitive controllers using various different
parameters and in combination with the adaptive algorithms LMS
and inverse QR-RLS.
The second set of data is summarized in Table 2. There, we show

the performance index value 3σ for experiments performed at
different locations of the HDD, employing the baseline controller,
a LTI one-period repetitive controller (120 Hz), a LTI two-period
repetitive controller (70, 120 Hz), a LTI three-period repetitive
controller (70, 120, 407 Hz), and the adaptive–repetitive scheme
in Fig. 6, using the LMS and inverse QR-RLS algorithms with filters
Q of orders 64 and 256, respectively. Clearly, the effectiveness of
the proposed method is demonstrated.

6. Conclusions

In this paper we presented a new method for synthesizing
multiple-period repetitive controllers which are integrable into
a minimum-variance control scheme that combines repetitive
and adaptive components. The main result presented here is
a theorem that states a particular solution to the multiple-
period repetitive control problem. The theorem was proven
using mathematical induction, and based on the proof, a period-
recursive method for synthesizing multiple-period repetitive
controllers was derived. Experimental results on the track-
following control of a commercial hard disk drive were used to
demonstrate the effectiveness of the proposed method, in which
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Fig. 10. Close-ups of a plot that compares the same PSDs of the PES y plotted in
Fig. 8, obtained by three different methods.

a superior performance, evidenced by 3σ values of around 4% of
the track width, is consistently achieved.
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