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Abstract
In this paper, we present experimental results on altitude control of a flying microrobot. The
problem is approached in two stages. In the first stage, system identification of two relevant
subsystems composing the microrobot is performed, using a static flapping experimental
setup. In the second stage, the information gathered through the static flapping experiments is
employed to design the controller used in vertical flight. The design of the proposed controller
relies on the idea of treating an exciting signal as a subsystem of the microrobot. The methods
and results presented here are a key step toward achieving total autonomy of bio-inspired
flying microrobots.

S Online supplementary data available from stacks.iop.org/BB/6/036009/mmedia

(Some figures in this article are in colour only in the electronic version)

1. Introduction

In [1], the feasibility of flying robotic insects was empirically
demonstrated. However, the control challenges that need to be
solved in order to achieve total autonomy of flying microrobots
are both attractive and daunting. Given the maneuverability of
many flying insects, it is natural to look to biology to inspire
both morphology and control strategies. Researchers have
attempted to elucidate the control architecture of flying insects.
It appears that the key features include a plethora of sensory
information [2], selection of sensor modalities appropriate
to various flight conditions [3] and a reflexive network for
rapid perturbation rejection [4–6]. In parallel with the
evolution of sensing and computation technologies to mimic
these features, we seek to demonstrate viable flight control
methodologies for these microrobots using off-board sensing
and computation. This is an intrinsically multidisciplinary
problem, in which several engineering aspects must be
considered simultaneously, including aerodynamics, sensing,
actuator design, micro-fabrication and system identification
for control. In this paper, we constrain the problem to one
degree of freedom, namely altitude control, and in this context

we propose a framework that is also expandable to the more
general case. Most significantly, we propose a methodology
for synthesizing controllers that is based on a combination of
analysis and experimentation. An alternative approach, not
discussed here, could rely primarily on idealized modeling
and simulations [7–9].

In [10] and [11], using a static single-wing flapping
microrobot, a methodology for designing altitude controllers
was proposed. There, the altitude control problem was
transformed into the one of lift-force control, and then solved
using standard system identification methods for LTI systems
and a model-based adaptive control scheme. Here, we propose
a two-stage methodology for tackling the problem, where in
the first stage substantial a priori information about the system
is gathered through system identification. In the second stage,
the information obtained in the first stage is used as a guide for
designing a feedback controller. The main idea introduced in
this paper is that, as a design choice, the fundamental shape of
the exciting signal applied to the microrobotic insect is selected
a priori, based on information obtained through static flapping
experiments. One way of thinking of this signal is as a basis
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function. Then, some defining parameter of the chosen signal
is modified in real-time according to a feedback law. This is
a fairly general idea and we envision substantial research in
this direction in the near future. In the case presented here,
we choose sinusoidal exciting signals with fixed frequencies
and varying amplitudes. This approach allows one to think
of a unit sinusoidal signal as a subsystem and to think of
the pre-multiplier (i.e. amplitude) as the input to the system
to be controlled, whose output is the altitude of the flying
insect. While the choice of a sinusoidal basis is natural
for an oscillating system operating at or near resonance, this
methodology is generalizable to other periodic or aperiodic
choices of basis. This approach is analogous to amplitude
modulation, used by many insects to control flight forces
[12, 13]. Alternatively, the amplitude can be fixed and the
flapping frequency varied for frequency modulation [12, 13].

In the context of this research, progress is achieved
through a constant interaction between mechanical design
and controller design. While the main mechanical features
of the microrobot are inspired by nature, they are designed
and fabricated to be compatible with the implementation of
the control strategies we develop. Similarly, the control
algorithms are inspired by nature but constrained by the
microrobotic system capabilities. Thus, the resulting solution
has flavors of both bioinspiration (reflected on the discussions
on amplitude versus frequency modulation for thrust control
[13] and the use of active versus passive wing rotation
to manipulate flight forces [14, 15]) and classical control
techniques.

The developments presented in this paper are a key step in
achieving the goal of autonomous flying microrobots. A main
result is that stable hovering and vertical trajectory following
are achievable with an under-actuated system that relies on
passive wing motions during operation [16]. This is the
first demonstration of closed-loop control of an insect-scale
robot. A second significant result is that the robotic insect
in figure 1 is capable of generating lift-forces as much as 3.6
times its weight. This provides room for payload such as
steering actuators and structures [17], sensors and power. The
forthcoming sections describe the methodology for developing
controllers for flying flapping-wing robotic insects and present
compelling evidence on the viability of the proposed approach
with experiments on a 56 mg robot (see figure 1).

Notation

• As usual, R and Z
+ denote the sets of real and non-negative

integer numbers, respectively.
• The variable t is used to index discrete time, i.e. t =

{kTs}∞k=0 with k ∈ Z
+ and Ts ∈ R. As usual, Ts is referred

to as the sampling-and-hold time.
• The variable τ is used to index continuous time. Thus,

for a generic continuous-time variable x(τ), x(t) is the
sampled version of x(τ).

• z−1 denotes the delay operator, i.e. for a signal x,
z−1x(k) = x(k − 1) and conversely zx(k) = x(k + 1).
For convenience, z is also the complex variable associated
with the z-transform.

Figure 1. Photograph of the biologically inspired microrobotic
flying insect.

2. Experiments and controller design

2.1. Problem formulation

The final goal of our research efforts is to design and control a
flapping-wing flying microrobot, similar to the one in figure 1,
capable of sustained autonomous flight. As shown in figure 2,
the device in figure 1 is unstable in open loop. This microrobot
was designed such that drag forces are symmetric about the
upstroke and downstroke, summing to 0, and the mean lift
force vector intersects the center of mass. Thus, ideally,
no body torques are generated and the angles of rotation
in three dimensions about the robot’s center of mass (pitch,
roll and yaw) should stay at 0◦. However, any asymmetry
in the flapping mechanism, due to small fabrication errors,
would cause the robot to deviate from the vertical trajectory.
The solution of this problem requires the incorporation of
additional actuators to the robot’s design, since the model
described here is under-actuated. This topic is a matter of
current research [17]. Here, we concentrate on the control of
a single degree of freedom: altitude.

The specific objective of the research presented in this
paper is the invention and implementation of an altitude control
strategy for the microrobot in figure 1 constrained to move
along a vertical axis. The analysis begins with the free body
diagram of the microrobot shown in figure 3. A first thing to
note is that from figure 3, the equation of motion along the
vertical axis is simply

γL(τ) − mg = mẍ(τ), (1)

where m is the mass of the robot, g is the gravitational
acceleration and γL(τ) is the instantaneous lift force generated
by the flapping wings. In some cases, an additional dissipative
body drag term κd ẋ(τ ) could be added to the right side of (1),
where κd is a constant to be identified experimentally. Note
that the system, as described by (1), is unstable because its
input–output representation has two poles at 0. As described
in [10, 11] and [16], the lift force γL(τ) is a nonlinear
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t = 0.000s t = 0.111s t = 0.165s t = 0.204s t = 0.252s

1cm

Figure 2. Video sequence of an unconstrained free flight experiment used to highlight the need for an active control strategy. Here, the
under-actuated microrobotic fly in figure 1 is powered in open loop, and then it takes off and remains airborne until crashing due to its
intrinsically unstable behavior.
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Figure 3. Illustration of the microrobotic fly employed in the
research presented in this paper, similar to the one in [1]. This
microrobot was entirely designed and fabricated by the authors at
the Harvard Microrobotics Laboratory. �L: average lift force; ϕ:
flapping angle (also referred to as stroke angle); θ : passive rotation
angle.

function of the frequency and amplitude of the flapping angle
ϕ. Also as discussed in [10], [11] and [16], for sinusoidal
inputs, instantaneous lift forces γL(τ) typically oscillate
around some non-zero mean force, crossing zero periodically.
Therefore, ascent occurs when the average lift force is larger
than mg.

In some studies of biological flapping-flight
[12, 18, 19], the mean total force, �T , generated by a
wing (or a symmetrical wing pair) throughout the stroke is
estimated as

�T =
∫ 	

0
ρC�ν2

r (ξ)c(ξ) dξ, (2)

which is a standard quasi-steady blade-element formulation of
flight force (see [16] and references therein), where ρ is the
density of the air (1.2 kg m−3, [12]), C� is the mean force
coefficient of the wing throughout the stroke, ν2

r (ξ) is the
mean square relative velocity of each wing section, c(ξ) is the
chord length of the wing at a distance ξ from the base, and
	 is the total wing length. Note that assuming a horizontal
stroke plane, for a sinusoidal stroke ϕ(τ) = ϕ0 sin (2πfrτ),
the relative velocity of the wing section can be estimated as

νr(τ, ξ) = ξ ϕ̇(τ ) = 2πfrξϕ0 cos (2πfrτ) , (3)

which implies that the mean square relative velocity of each
wing section can be roughly estimated as

ν2
r (ξ) = 4π2f 2

r ξ 2ϕ2
0

1

Tr

∫ Tr

0
cos2 (2πfrτ) dτ, (4)

with Tr = f −1
r . Thus, it immediately follows that

ν2
r (ξ) = 2π2ξ 2ϕ2

0f
2
r , (5)

which implies that regardless of the size and shape of the wing
(or symmetrical wing pair), the estimated mean total flight
force directly depends on f 2

r and ϕ2
0 . This indicates that in

order for flying insects to accelerate against gravity or hover at
a desired altitude, they can modulate the average lift force by
changing the stroke amplitude, ϕ0, or by changing the stroke
frequency, fr . The first technique is referred to as amplitude
modulation and the second as frequency modulation.

In the problem considered here, the model in (2) is not
practical for designing a general control strategy, because it
explicitly depends on the morphology of the particular system
to be controlled. However, we can use (5) as a general
guideline from which we can inspire control strategies. In the
robots considered here, the transmission that maps the actuator
output, y(t), to the stroke angle, ϕ(t), can be approximated
by a constant κT , i.e. ϕ(t) = κT y(t). Thus, changing the
amplitude and/or the frequency of y(t), �T can be modulated.
The control strategies proposed here can be used for amplitude
modulation or frequency modulation. However, we mostly
concentrate on amplitude modulation.

As shown in figure 3, in this case, lift forces are generated
through passive rotation. This means that there is not an
active mechanism rotating the wings around their respective
wing hinges. Instead, the rotation θ in figure 3 is produced by
inertial forces and by the dynamic interaction of the wings with
the air. The rotation θ is essential, since without it, the wings
would not face the air with the angles of attack required for the
generation of lift forces. In contrast to the case considered in
this paper, in nature, the wing rotations necessary for creating
angles of attack seem to be produced by a combination of
active and passive mechanisms that cause the wings not only
to rotate, but also to deform [14, 15].

When using digital computers for measurement and
control, γL(τ) will be sampled at a fixed sampling rate Ts .
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Figure 4. Setup used in static flapping experiments. Left: isometric view. Right: side view. Here, the flapping microrobot is attached to an
Invar double-cantilever beam, whose deflection is measured by a capacitive displacement sensor. This deflection is proportional to the
instantaneous lift force generated by the wing flapping. The deformation of the actuator is measured using a CCD laser displacement sensor.
For further details, see subsection 5.4.

The sampled discrete-time version of γL(τ) is labeled as γL(t).
Therefore, the average lift force can be estimated as

�
(NL)
L (t) = �

(NL)
L (kTs) = �

(NL)
L (k) = 1

NL

NL−1∑
i=0

γL(k − i), (6)

where 0 < NL ∈ Z
+. Often, the superscript (NL) will be

dropped and we will simply write �L(t), if NL is obvious
from the context. Note that for an ascending or hovering
robotic fly, �L(t) is an estimate of �T . Thus, as previously
described in [10] and [11], the original altitude control problem
can be translated into one of discrete-time average lift force
tracking, and then, into one of actuator displacement output
signal following. These topics are addressed in the next two
subsections.

2.2. Static flapping experiments

In the rest of this section, we describe the design methodology
for control strategies that enable flying microrobots to
fly in a predictable manner along the vertical axis.
The microrobot employed in the experiments, shown in
figure 1, is an under-actuated robot capable of generating
lift-forces by flapping two mechanically coupled identical
wings. A complete understanding of this system based on
first principles is extremely challenging because the dynamics
depends on complex nonlinear aerodynamics and on nonlinear
transmission and actuation mappings. Also there exists a
significant variation from case to case due to fabrication errors.
Therefore, in parallel with thorough modeling and simulation
of these components, we rely on experimental identification.
In [10] and [11], using a single-wing flapping static microrobot
(i.e. rigidly connected to the ground), it was shown that a
substantial amount of information can be gathered through
experiments such as the one depicted in figure 4. Here, the
microrobot is rigidly connected to a force sensor similar to
that developed in [20]. Simultaneously, a laser displacement
sensor is used to measure the displacement output of the
piezoelectric actuator, drawn in yellow in figure 4, employed
to transduce electrical into mechanical work, similar to the
one described in [21]. The linear displacement of the drive

P (z)
u(t) y(t)

v(t)

+

Figure 5. Idealized actuator dynamics. P(z): discrete-time
open-loop plant; u(t): input voltage signal to the actuator;
y(t): output displacement of actuator; v(t): output disturbance,
representing the aggregated effects of all the disturbances affecting
the system, including vibrations generated by the aerodynamic
forces produced by the wing flapping.

actuator is mapped to an angular flapping motion employing a
transmission mechanism of the type described in [1]. The
resulting flapping angle is labeled by ϕ in figure 4. As
explained in [16], flapping induces aerodynamic and inertial
forces which produce a moment on the flexure at the wing
base, generating a passive rotation that in turn creates a non-
zero angle of attack during the wing stroke, thereby producing
lift.

In this case, two relevant mappings can be estimated. One
is the dynamic mapping from the input voltage to the actuator
displacement, labeled as P, whose idealized block diagram
is shown in figure 5. Here, u(t) is the input, y(t) is the
measured output and v(t) is output disturbance, representing
all the disturbances affecting the system, including vibrations
generated by the aerodynamic forces produced by the wing
flapping. The other is the static mapping from actuator
displacement to the steady-state average lift force, assuming
sinusoidal displacements y(t), �. Thus, �(A, f ) = �L,
where A and f are the amplitude and frequency of the
displacement y(t) = A sin(2πf t), respectively. �L is the
abstract steady-sate average lift force produced by the flapping
of the insect’s wings, i.e. in (6) NL → ∞. Typically,
instantaneous forces produced by the wings are oscillatory
signals with a positive average value. Thus, as mentioned
before, hovering occurs if �L is approximately equal to the
weight of the robotic insect, and vertical motion occurs if
�L is larger than the sum of the insect’s weight and the
vertical aerodynamic drag. The instantaneous force γL(t) in
(6) is measured with the force sensor depicted in figure 4.
The transfer function P is relevant because it gives us
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Figure 6. Left: Bode diagram of identified model P̂ (z) of the plant
P(z). A 24th-order model is shown in dashed green, a reduced
second-order model is shown in solid blue. Right plot: estimate
ŜP = (1 − P̂Q90 Hz)

−1 of the output sensitivity function
SP = (1 − PQ90 Hz)

−1, obtained using the LTI equivalent
input–output representation of the adaptive controller used to
enforce desired sinusoidal trajectories of the actuator displacement.

information about the bandwidth of the system. Also it can
be used to design feedforward altitude control strategies as the
one in [10] and [11]. The mapping � is relevant because it
allows one to choose the most suitable frequencies to drive the
system.

An estimate P̂ of P is found using the n4sid algorithm
[22], after exciting the system with white noise. The resulting
model is shown on the left in figure 6. Note that for
convenience, units are ignored and the identified models have
been normalized so that the respective dc gain is 0 dB. This
model is used to design an adaptive controller that enforces
desired sinusoidal trajectories of the actuator, with the form
yr(t) = Ar sin(2πfr t), similar to the cases shown in [10] and
[11]. The main characteristic of the employed scheme is that
the signal r(t) = −yr(t) is treated as an output disturbance
to be rejected. This allows one to employ adaptive rejection
schemes specialized in canceling families of sinusoidal signals
for tracking references with the form of yr(t). As described
in [10], an equivalent LTI input–output model of the adaptive
scheme can be found, when the frequency fr is fixed. This
remarkable equivalence allows us to utilize classical tools to
study the resulting system. This idea is shown in figure 7. The
LTI equivalent output sensitivity function SP = (1−PQf r

)−1

can be estimated as ŜP = (1 − P̂Qf r
)−1, where Qf r

is
the LTI equivalent feedback controller for a fixed frequency
fr . Clearly SP is the mapping from r(t) to the control error
ey(t) = y(t) + r(t). As an example, the resulting estimated
sensitivity function, for the case fr = 90 Hz, is shown on
the right in figure 6. Note that a deep notch appears at
90 Hz, which implies that when yr(t) = Ar sin(2π90t),
the value of e(t) is essentially equal to 0, and therefore,

P (z)
u(t)

Q(z)

y(t)

+

r(t) = −yr(t)

ey(t) = y(t) + r(t)

Figure 7. Block diagram of the input–output equivalent LTI model
of the adaptive scheme used for following the desired displacement
of the actuator yr(t), assuming v(t) = 0, ∀t . Here, r(t) = −yr(t) is
treated as a disturbance to be rejected.
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Figure 8. Empirical relationship between lift force and actuator
displacement amplitude A ≈ Ar with fr taking values of 70, 80, 90,
100 and 110 Hz. Here, A is normalized so that a unit input to P(z),
u(t) = 1, produces a unit output y(t) = 1. Also, u(t) = 1 means
that the actuator is excited at its maximum allowable voltage 300 V.
Each data point was computed from 200 000 samples, obtained
at 10 kHz.

y(t) = yr(t). Thus, driving the system in closed loop, some
specific points of � are estimated empirically. This is done by
fixing the frequency fr , while the amplitude Ar is varied. The
results are shown in figure 8, which indicate that any of the five
frequencies tested, 70, 80, 90, 100 and 110 Hz, are suitable for
producing lift forces capable of generating vertical motions of
a 56 mg robotic insect, the case studied in this paper. The
segmented red lines in figure 8 are least-squares fits to the
data obtained with fixed frequencies fr . Also shown is the
56 mg threshold which is marked using a bold black line. In
figure 8, the amplitude A of the output signal y(t) =
A sin(2πf t) is normalized so that a unit input to P(z),
u(t) = 1, produces a unit output y(t) = 1. Also, u(t) = 1
means that the actuator is excited at its maximum allowable
voltage, 300 V. Each data point in figure 8 is computed from
200 000 samples, obtained at 10 kHz.

Note that the empirical relationship for the case 110 Hz is
not completely linear, as it is in the other cases considered
here. We do not have a definitive explanation for this
anomaly. However, there are several plausible causes for the
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phenomenon: (1) at this frequency, the forces exerted on the
robot’s airframe cause it to deform so that the mapping from
the actuator displacement, y(t), to the stroke angle, ϕ(t), is
no longer a constant, which could increase or decrease the
efficiency of the mechanical transmission in unpredictable
ways; (2) as explained in [1, 10, 11] and [16], lift forces
are produced as the result of the passive rotation of the
wings around a wing hinge. When the angle of this passive
degree of freedom becomes close to ±90◦ (phenomenon
known as over-rotation), the efficiency of the system could
be substantially decreased. Over-rotation is expected to occur
at relatively high flapping frequencies and amplitudes. Thus,
over-rotation might explain the resulting points corresponding
to A = 0.95, A = 1.0, A = 1.05 for the case 110 Hz;
(3) higher flapping frequencies might excite undesirable
resonances of the custom-made sensing mechanism, which
could degrade the accuracy and precision of the static sensing
device.

From figures 6 and 8, it can be inferred that one
appropriate choice of drive frequency is 90 Hz, because of
the large range and relatively linear relationship between
amplitude and force. This follows from noting that if
aerodynamic drag is neglected, in order for the robotic insect
to move upward, the average lift force has to be larger than
the robot’s weight. And, for the robot to move downward,
the robot’s weight has to be larger than the generated average
lift force. Therefore, a general strategy for controlling altitude
emerges naturally: a feedback control law in which the control
signal is the amplitude of a chosen exciting sinusoidal signal.
Note that one could also choose frequency as the control signal,
because of the relationship between flapping frequency and
average lift force in figure 8.

It is important to mention that using the information in
figure 8, a force balancing control strategy can be pursued
for hovering and trajectory following. This was done in [10].
There, the controlled variable is the actuator displacement y(t)

and the control reference is the desired actuator displacement.
The main idea is that using a look-up table found in a similar
way to the one graphically described in figure 8, a desired
actuator output is generated in real time, in order to produce
a desired average lift force that makes the system to follow a
pre-chosen vertical trajectory. As shown in [10], this strategy
can be used to make the flying robot hover by balancing the
robot’s weight and the time-averaged lift produced by the
flapping wings. As also shown in [10] using a hardware-in-the-
loop experiment, trajectories can be attempted using the same
approach. The problem with the balancing strategy is that this
is not robustly stable. Thus, when hovering, small variations
in the generated average lift forces cause the robot to slowly
drift upward or downward. These problems are avoided if the
altitude of the robot is directly measured and used to generate
the control signal, as described in the next section.

2.3. Flight experiments

The altitude control experiment is depicted in figure 9. The
experimental setup was designed to constrain the flight of
the robotic insect to the vertical degree of freedom, while

x = 0

x

laser

displacement

sensor

g

laser
beam

guide
wire

Figure 9. Setup used in the altitude control experiments. Left:
isometric view. Right: front view.

D/A
Flying

Microrobot
Position
Sensor A/D×au(t) x(t)

sin (2πfut)

Figure 10. Block diagram of the system used in altitude control
experiments.

measuring the altitude using a long-range laser displacement
sensor, depicted in figure 9 and described in subsection 5.4.
The altitude measurement is labeled as x(t), which is the signal
to be used in the implementation of feedback controllers, after
being read by the laser position sensor and digitized using an
analog-to-digital board, as described in figure 10. The reason
for constraining the movement of the microrobot to one degree
of freedom is that in the current design, the system is under-
actuated, without the ability to completely control all body
moments [17]. The input to the microrobot is a voltage to
the piezoelectric actuator that provides mechanical power to
the system. In figure 10, the block labeled as D/A represents
the digital-to-analog signal conversion and the amplification
to the analog range [0, 300] V from the range [0, 1] on which
the digital signal au(t) has been normalized. Note that the
RMS values of the currents at 300 V range from 0.5 to 1 mA,
approximately [23]. Thus, representing all the disturbances
and sensor noise affecting the system by the output disturbance
signal d(t), the system illustrated in figure 9 and depicted
in figure 10 can be idealized by the block diagram in
figure 11.

Inspired not only by nature, but also for practical
reasons, roboticists have commonly designed flapping-wing
mechanisms to be excited by sinusoidal signals. Here, we
adopt the same design choice, acknowledging that other shapes
for exciting signals are conceivable. In this approach, formally,
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G(z)
au(t) x(t)

d(t)

+

Figure 11. Idealized system dynamics. G(z): discrete-time
open-loop plant; au(t): input amplitude; x(t): measured altitude;
d(t): output disturbance, representing the aggregated effects of all
the disturbances affecting the system, including stochastic wind
currents. G(z) is idealized under the assumption that the frequency
fu is fixed and that au(t) oscillates around aH , which is the exact
amplitude required for hovering.

the input signals have the form

u(t) = au(t) sin (2πfut) . (7)

The idea is to think of sin (2πfut) as a part of the system and
consider au(t) to be the control signal, generated according to
some control law. Thus, in closed loop, the signal applied to
the system in figure 11 has the form

au(t) =

⎧⎪⎨
⎪⎩

1 if bu(t) � 1

bu(t) if au < bu(t) < 1

au if bu(t) � au

(8)

with

bu(t) = K(z)ex(t), (9)

where K(z) is a discrete-time LTI operator depending on the
delay operator z−1 and the real number au ∈ [0, 1] is the
minimum allowable value that au(t) can take. The signal
ex(t) is the control error defined as ex(t) = xd(t) − x(t),
where xd(t) is the desired altitude and, as stated before,
x(t) is the measured altitude signal depicted in figure 9. In
general, an appropriate K(z) can be found experimentally,
or designed using a model of the microrobot dynamics. The
latter approach is pursued here, using an identified model Ĝ(z)

of the idealized system dynamics G(z) in figure 11, with the
fixed frequency fu = 90 Hz. The system identification is
performed using the n4sid algorithm [22], after exciting the
system with a pseudo-random binary signal (PRBS) [24]. A
section of the employed PRBS is shown on the upper-left in
figure 12. Note that as shown on the lower-left in figure 12,
this chosen input causes the flying robot to maintain an altitude
larger than zero during the whole identifying experiment, i.e.
the identification is performed during flight. The resulting
identified LTI model is shown on the left in figure 13. A closed-
loop validation of the identified model is shown on the right in
figure 12.

Note that the resulting model Ĝ(z) is only valid when the
robotic insect is flying around a hovering point. This means
that the input au(t) is oscillating around a constant amplitude
aH ∈ R, defined as the amplitude generating the exact average
lift-force that balances gravity. Clearly, aH must be thought of
as an abstract artifact and not as a practical value, because the
required value of au(t) needed for hovering might vary over
time, due to degradation of the robot, for example. Also note
that the identified model in figure 13 is only valid for fu =
90 Hz. It follows that if another fu is chosen, another system
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Figure 12. Excitation signals used in the system identification of
G(z), for fu = 90 Hz. Left: section of the data used in the system
identification of the system G(z). Right: section of the data used in
the validation of the identified model Ĝ(z) of G(z).
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Figure 13. Left: Bode diagram of identified model Ĝ(z) of the
plant G(z). A 24th-order model was originally identified, a reduced
second-order model, whose Bode plot closely matches the original
24-order model, is shown in blue. Right: estimate Ŝo = (1 + ĜK)−1

of the output sensitivity function So = (1 + GK)−1, shown in green.
Estimate T̂ = ĜK(1 + ĜK)−1 of the complementary sensitivity
function T = GK(1 + GK)−1, shown in blue.

identification has to be performed to represent the system
associated with that specific frequency.

The methodology described in the previous paragraph
treats the flying microrobot as a black box. In [25], in a
qualitative analysis, the dynamics of insects is described as a
black box that maps inputs to outputs. There, it is discussed
that, using insects in free flight, the estimation of mappings
have been attempted numerous times. However, this task
is extremely difficult, because inputs cannot be arbitrarily
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chosen by the experimenters and because the measurement
of variables in free flight is very challenging. Fortunately,
those are problems that are substantially more manageable in
the case presented in this paper.

Using the model Ĝ(z) and classical techniques, the LTI
controller K(z) is designed. The stability and stability
robustness of the closed-loop configuration under K(z) is
evaluated using the classical indices gain and phase margins,
and the resulting performance can be predicted using estimates
of the output and complementary sensitivity functions, So =
(1 + GK)−1 and T = GK(1 + GK)−1 [26]. These estimates,
computed as Ŝo = (1 + ĜK)−1 and T̂ = ĜK(1 + ĜK)−1,
respectively, are shown on the right in figure 13. An important
thing to note in figure 13 is that the identified model Ĝ(z) is
a narrow-band low-pass filter that significantly amplifies and
attenuates the low and high frequencies, respectively. This
establishes fundamental constraints on the achievable speed
of the robotic insect. Thus, the primary objectives of the
controller design are to increase the system bandwidth and
simultaneously to reject low-frequency disturbances. From
the Bode plots of T̂ and Ŝo, these objectives are achieved. The
fulfillment of the first objective follows from noting that T
maps the desired altitude signal xd(t) to the measured altitude
signal x(t), and that the bandwidth of T̂ is significantly wider
than the bandwidth of Ĝ. The fulfillment of the second
objective follows from noting that in closed loop So maps
the output disturbance d(t) to the measured altitude x(t), and
that Ŝo is a high-pass filter. The shapes of the resulting T̂

and Ŝo are completely explained by the so-called waterbed
effect, a direct consequence of the Bode sensitivity integral
theorem [26].

3. Results

The purpose of this section is to demonstrate the capability
of the robotic insect to perform hovering, trajectory-
following and to reject disturbances, when connected in
closed loop with the nonlinear controller defined by (8) and
(9), as described in the previous section. The first two
capabilities are demonstrated in figure 14, with au = 0.5,
and the third is demonstrated in figure 16, with au =
0.35. A compressed visual description of the achieved
results is given in the supplemental movie S1 (available
at stacks.iop.org/BB/6/036009/mmedia). Additional details
about the experiment in figure 14 are given in the supplemental
movie S2 (available at stacks.iop.org/BB/6/036009/mmedia)
and in figure 15. In the experiment in figure 14, the microrobot
starts flapping at time = 0 s when the value of the signal au(t)

is slowly increased from 0 to 0.5. From the information in
figures 6 and 8, it is clear that the lift-force produced with
au(t) = 0.5 is not enough to produce a vertical movement.
At time = 10 s the feedback loop is closed, and immediately
the value of au(t) reaches the allowed upper bound of 1, and
as predicted by figure 8, the robotic insect starts to move
vertically, reaching the desired position xd(t) = 2.5 cm in
0.36 s, hovering at this position for 10 s. This transition is
shown in the sequence of photographs in figure 16. Then, at
time = 20 s, the desired position is set to xd(t) = 3.5 cm.
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Figure 14. Stable hovering and trajectory following experiment.
Upper plot: altitude measurement x(t), reference xd(t) and control
error ex(t). Middle plot: control signal u(t) = au(t) sin (2πfut),
with au = 0.5. Bottom plot: close-up of control signal u(t).

As can be observed in the supplemental movie S2 (available
at stacks.iop.org/BB/6/036009/mmedia), the transition from
2.5 cm to 3.5 cm is both fast and smooth, despite the fact
that due to a brief misalignment of the laser position sensor,
the altitude information is erroneous for fractions of a second
(the spike in the measurement trace at 20 s in the upper plot
of figure 14). This empirically demonstrates the robustness
of the proposed control strategy. Note that sensor spikes can
be completely avoided by carefully aligning the laser position
sensor under the microrobot.

The tracking capability of the employed control scheme
is demonstrated in the second part of the same experiment. At
time = 30 s, the reference is switched from the constant xd(t) =
3.5 cm to the oscillatory signal xd(t) = [3.5 + sin(2π · 0.03t)]
cm. From (8), the maximum speeds at which the microrobot
can travel upward and downward are determined by the mass
of the robotic insect and by the upper and lower bounds on
au(t), 1 and 0.5, respectively. The upper bound is a hard
constraint corresponding to the maximum voltage to which the
piezoelectric actuator can be safely excited. The lower bound
is a design choice that can take values in the interval [0, 1].
Figure 15 demonstrates the disturbance rejection capabilities
of the proposed strategy. Here, the hovering microrobot is
disturbed by air gusts using a small hose. The video of the
complete experiment is shown in the supplemental movie S3
(available at stacks.iop.org/BB/6/036009/mmedia). Note that
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Figure 15. Disturbance rejection experiment. Upper plot: altitude
measurement x(t), reference xd(t) and control error ex(t). Bottom
plot: control signal u(t) = au(t) sin (2πfut), with au = 1

3 . Each
spike corresponds to a disturbance event.

as is clear from the lower plot in figure 15, in this case, au = 1
3 ,

which decreases the system’s reaction-time when it is required
to move downward at high speeds. Additional trajectory
following experiments are presented in the supplemental
materials (available at stacks.iop.org/BB/6/036009/mmedia).
There, movie S1 gives an overview of the control system
capabilities, movie S4 shows the trajectory following of a
higher-frequency sinusoidal signal, and movie S5 shows the
trajectory following of a square wave.

4. Discussion and conclusion

The aerodynamics of natural flying insects is highly complex
and the precise mechanisms by which they are able to propel
themselves is not yet completely understood [27]. Also,
as discussed in [16], the analysis of the aeromechanics of
passive rotation of even simple flapping mechanisms yields
a highly nonlinear dynamic description of the associated
phenomena. Here, adopting the ceteris paribus principle,
we concerned ourselves with the altitude control problem
in one degree of freedom. In this context, we empirically
show that substantial information about the flying system
can be gathered from input–output experiments, so that
robust controllers can be designed to achieve tasks such as

Figure 16. Video sequence showing the transition from 0 to 2.5 cm in figure 14. The side ruler is placed as a rough reference, not for exact
measurement of the flying robot’s altitude. The exact vertical position x(t) is measured using the laser displacement sensor depicted in
figure 9. The sampling time at which the frames were taken is approximately 51.4 ms.

hovering, trajectory following and rejection of disturbances.
This follows from adopting suitable and effective design
paradigms such as considering the exciting signal in figure 10
as part of a linear system that can be identified using
standard state-space system identification algorithms. The
results presented here suggest that the approach introduced in
this investigation is appropriate in the pursuit of completely
autonomous flying microrobots. It is possible to envision
the application of the same design principles and analytical
tools to more sophisticated flying micromachines, capable
of generating actuation in more than one degree of freedom
[17]. The feasibility of integrating additional actuators in
the design of the microrobot is supported by the information
in figure 8, which indicates that if the right exciting signals
are chosen, the flying microrobot can carry as much as 3.6
times its current weight. Beyond the findings relevant from
an engineering perspective, the results presented here could
have an important significance from a biological perspective,
since they unequivocally demonstrate that stable hovering and
vertical trajectory following can be achieved without the need
for active control over wing pronation and supination.

5. Materials and methods

5.1. Fabrication of the robotic insect

The robotic insect used in this research was entirely
developed and fabricated by the authors at the Harvard
Microrobotics Laboratory, based upon designs which
previously demonstrated the ability to liftoff [1]. The
key components include a piezoelectric bending bimorph
cantilever actuator [28], a flexure-based transmission, a pair
of airfoils, and an airframe which serves as a mechanical
ground. The transmission maps the approximately linear
motions of the actuators into the flapping motion of the wings.
The transmission consists of links and joints with geometries
designed to maximize the product of stroke amplitude and
first resonant frequency, given known actuator and airfoil
properties. Fabrication of all components relies on a layered
meso-scale manufacturing process which starts with thin
sheets of the constituent materials that are laser micromachined
into desired 2D geometries [29]. Actuators are created
by laminating two piezoelectric plates (PZT-5H from Piezo
Systems, Inc.) to a carbon fiber spacer and electrode layer.
The airframe and transmission are created by layering a
7.5 μm polyimide film (Chemplex Industries) with carbon
fiber face sheets. By appropriate design of the layer
geometries, any 3D structure can be created in this
manner including flexure-based articulated components and
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(a)

(b)

(e)

(d)

(c)

Figure 17. Graphical description of the fabrication and assembling process. The whole process is composed of four main steps:
lamination (a), singulation (b), release (c) and assembly (d).

rigid structures (e.g. the transmission and the airframe,
respectively). A final manual assembly step is required to
integrate all components and make electrical connections to
the actuator.

The main difference between the previous robotic insect
designs and the one utilized in this research is the addition of
hooks to the airframe for compatibility with the experimental
setup in figure 9. The fabrication and assembling process of
the airframe is shown in figure 17. The other components of
the microrobot are fabricated in a very similar manner, and
assembled as shown in figure 17.

5.2. System identification of plants P and G

As indicated in the main text, both plants P and G are
identified using the n4sid algorithm in Matlab. The acronym
n4sid stands for numerical algorithm for subspace state space
identification [22].

5.3. Digital processing of the signals

The real-time processing of all the signals involved is done
using a MathWorks xPC-Target system. The sampling-and-
hold rate used for measuring and control was set at 10 kHz.

5.4. Sensors

The displacement of the actuator, depicted in figure 4, is
measured using a short-range CCD laser displacement sensor
LK-2001 fabricated by Keyence. The altitude of the robotic
insect, depicted in figure 9, is measured using a long-
range CCD laser displacement sensor LK-2503 fabricated by
Keyence. In the static flapping experiments in figure 4, the
instantaneous force is measured by sensing the deflection of
the double-cantilever beam to which the microrobot is rigidly
connected. The beam deflection is measured using a capacitive

displacement sensor. For details on the design of the force
sensor, see [20].
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