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Abstract—This paper presents an investigation of the design
and implementation of minimum-variance adaptive controllers
for computer hard disk drive (HDD) read-write track following.
A common characteristic of minimum-variance controllers,
adaptive or not, is that they rely on prediction filters with large
high- frequency gains to predict broadband disturbances, and
this often produces control-signal saturation and eventual loss
of stability. Two methods are introduced here to address this
issue. The first method, suitable for online adaptive control, uses
frequency weighting to constrain the high-frequency gain of the
prediction filter. The second method, suitable for tuning fixed-gain
controllers, employs an adaptive scheme iteratively over a finite
duration. Both methods were implemented on a commercial
hard disk drive, and experimental results demonstrate their
effectiveness.

Index Terms—Control-signal saturation, frequency weighting,
hard disk drive (HDD), iterative adaptive tuning, minimum-vari-
ance adaptive control.

1. INTRODUCTION

N THE technical literature on hard disk drives (HDDs),
I two renowned control problems have been defined: track-
seeking and track-following. The former deals with the motion
control of the HDD heads between tracks in minimum time,
the latter with maintaining the HDD heads on the center of the
tracks. In this paper, we focus on track-following control of a
commercial HDD.

It has been reported that track-following can be thought of as
an output disturbance rejection problem [1]-[5], in which there
exist two main sources of disturbances affecting the HDD dy-
namics. The first is repeatable runout (RRO), which is produced
by imperfections and eccentricities on the tracks and character-
ized as being composed of sinusoidal signals with frequencies
that are multiples of the HDD platters rotation frequency. The
second is nonrepeatable runout (NRRO), produced by the ag-
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gregated effects of disk drive vibrations, electrical noise in the
circuits and the measurement channels.

Model-based minimum-variance adaptive schemes are well
suited to deal with output disturbance rejection problems.
Among the most prominent are the adaptive inverse control
(AIC) [6] and the adaptive-Q control (AQC) [7] schemes. The
former is particularly popular in the field of signal processing,
where it was developed for noise-canceling applications [6].
The latter is derived from the notion of (Q-parametrization, used
to characterize the class of all stabilizing controllers [7], [8]. It
can be shown that, despite the different denominations, AIC is
a particular case of AQC. Studies on the design and implemen-
tation of add-on adaptive controllers for HDD track-following,
resembling the AIC scheme, are reported in [1]-[3]. In those
works, the adaptive control algorithm employs the classical
recursive least-squares (RLS) method in [9]. The experimental
implementation of an AQC scheme for HDD control, using
the inverse QR-RLS algorithm in [10], is demonstrated in
[5]. There, the disk drive open-loop plant is stabilized using a
time-invariant linear quadratic Gaussian (LQG) compensator,
and then, an adaptive finite-impulse response (FIR) filter @ is
added according to the AQC configuration in [7]. In this paper,
we approach the problem using an AIC-like minimum-vari-
ance adaptive control scheme, employing the inverse QR-RLS
algorithm in [10].

A common characteristic of minimum-variance controllers,
adaptive or not, is that they amplify low-level high-frequency
disturbance while minimizing the mean-square values of the
output errors. This results from the fact that such controllers rely
on prediction filters with large high-frequency gains to predict
broadband disturbances. In some applications, like those pre-
sented in [11]-[13], in the context of laser-beam jitter control,
this amplification results in a spiking phenomenon in the con-
trol error, produced by the combination of control-signal satu-
ration and amplified high-frequency disturbance. There, it is ex-
plained that in cases when the saturation is severe, spikes might
be large enough, such that, the system output signal would take
values outside of the sensor range, driving the system unstable.
In the context of HDD control, the phenomenon of prediction
filters with large high-frequency gains has been reported in [14].
There, it is argued that, in combination with poor plant identi-
fication, filters with large high-frequency gains might drive the
adaptive system unstable. However, in that work, the specific
mechanism explaining instability seems to be other than satura-
tion, since this is not mentioned as a cause, and spiky behavior
is not reported.
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The concept of strictly positive real (SPR)! transfer function
has been used extensively in the stability analysis of a gen-
eral type of nonlinear systems, including a large number of
adaptive ones. In particular, the notion of SPR transfer func-
tion is employed to establish stability and convergence of adap-
tive identification methods [17], [18], upon which several kinds
of adaptive controllers are based on. For example, the scheme
in [3] adaptively identifies an ARMAX model of the system’s
plant in where stability and convergence are demonstrated by
assuming that the disturbance transfer function associated with
the to-be-controlled system satisfies a SPR property. Thus, one
could suspect that some of the problems mentioned in the pre-
vious paragraph are due to the fact that some SPR condition is
not satisfied. However, that is not relevant in the control scheme
considered in this work, because the system’s plant is identified
offline and what is computed adaptively is a minimizing filter
that is chosen to be FIR. Therefore, SPR conditions are not ex-
plicitly required.

A well-known phenomenon in adaptive control systems is the
appearance of a kind of instability called parameter drift [17],
characterized by adaptive parameters going to infinity with time.
This is due to the absence of persistence of excitation (POE) [9],
[17], which occurs when the regressor vector employed for esti-
mating the adaptive parameters is not rich enough in frequency
content. Another common problem noted in the adaptive fil-
tering and control literature is that the classical RLS algorithm
might suffer from numerical instability when implemented in fi-
nite precision arithmetic. In the experiments presented here, in-
stability associated with adaptive parameters taking large values
is observed. However, compelling evidence is given supporting
the idea that, in this case, the observation of adaptive gains
growing to large values cannot be equated with parameter drift
and lack of convergence, or with the numerical problems of
the RLS algorithm. In fact, we show empirically using a nu-
merically reliable algorithm, that in the HDD system consid-
ered here, the adaptive gains grow to large values because the
steady-state theoretical optimal solution is composed of gains
with large values, and not because there is parameter drift. The
steady-state theoretical optimal solution is found by solving a
Wiener—Hopf problem, employing linear time-invariant (LTI)
identified disturbance models under the assumption that the dis-
turbance affecting the system is statistically stationary.

Furthermore, this paper shows that, similarly to the cases
studied in [11]-[13], in this study, adaptive prediction filters
with large high-frequency gains produce signal saturation, re-
sulting in the appearance of spikes in the position error signal
and eventually in saturation-induced instability. To further test
the notion that, in the HDD system considered here, the spiky
behavior and instability are saturation-induced and not the re-
sult of parameter drift, we experimentally reproduce both phe-
nomenons employing LTI high-gain prediction filters.

In order to eliminate the saturation problem, two methods are
presented here. The first method employs frequency weighting
to reduce the value of the high-frequency gain of the adap-
tive prediction filter used to generate the control signal. The

IThere exists a close relationship between the concepts of passivity and SPR
transfer function. For a complete treatment refer to [15], [16]. For a concise
description see [17].
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Fig. 1. Schematic idealization of the HDD system.

frequency response of both, experimentally obtained and
analytically computed, steady-state filters demonstrate that,
by using the frequency weighting method, the adaptive filter
high-frequency gain can be reduced significantly, avoiding
saturation-induced instability. The second method employs
the original adaptive scheme iteratively over a finite dura-
tion to tune LTI minimum-variance controllers with reduced
high-frequency gain prediction filters. This method is especially
suitable for generating a series of fixed-gain controllers with
increasingly better performance.

The paper is organized as follows. Section II presents the
experimental setup and explains some relevant practical issues
relating to the real-time implementation of the controllers.
Section III describes the modeling and system identification
of the plants involved in the experiments and considered in
the analytical developments. Section IV explains the min-
imum-variance adaptive control scheme. Section V discusses
the main experimental issues in the implementation of the
adaptive loop. Section VI and Section VII discuss the fre-
quency-weighted adaptive control method and the iterative
adaptation method, respectively. Finally, Section VIII summa-
rizes the main experimental results and Section IX condenses
the main conclusions of this work.

II. DESCRIPTION OF THE EXPERIMENT

A hard disk drive is a mechatronic device that uses rotating
platters to store data. Information is recorded on and read
from concentric cylinders or tracks by read-write magnetic
transducers, called heads, that fly over the magnetic surfaces of
the HDD platters. The position of the heads over the platters is
changed by an actuator that consists of a coil attached to a link,
which pivots about a ball bearing. This actuator connects to
the head by a steel leaf called the suspension [19], [20]. In the
jargon of the HDD literature the moving part of the actuator is
known as the voice coil motor (VCM). This description of the
HDD is shown in Fig. 1.

The track-following control objective is to position the center
of the head over the center of a data track, being the deviation
of the center of the head from the center of a given track, often
called track misregistration (TMR) [20], the typical measure of
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Fig. 2. Block diagram of closed-loop system M with PD feedback control.
P: Open-loop plant; K&: Classical PD feedback controller; M = yu fupy =
PK(1 + PK)~*, with y,,: Position of the HDD head, u,,: Excitation for
system identification and wg: Output disturbance.

HDD tracking performance. A common index to quantify TMR
is

TMR = 30 ey

where o is the empirical standard deviation (STD) of the con-
trol error signal. It is common to express 30 as a percentage
of the track pitch [20], which must be less than 10% in order
to be considered acceptable. TMR values larger than this figure
will produce excessive errors during the reading and recording
processes.

In the experiments, we use a 2-platter (10 GB/platter) 4-head
7200 r/min commercial HDD, and a Mathworks xPC Target
system for control. The sample-and-hold rate of 9.36 kHz, used
for communication, control and filtering, is internally deter-
mined by the hard disk and transmitted through a clock signal
to the target PC used for control. Both systems must operate
in a synchronized manner. The position of a given HDD head
over a platter is digitally transmitted by the use of two signals.
The first conveys the track number (TN) over where the head
is positioned. The second is the so-called position error signal
(PES), which conveys the position of the head on the track
pitch. Thus, the measured position is function of both the TN
signal and the PES. The range of the PES is [—0.5, 0.5] with
a quantization-set size of 256, and where 0.0 corresponds to
the center of the track. Notice that oftentimes the PES and the
control error signal are identical.

III. PLANT MODELS AND SIGNALS

A. Identification of the Open-Loop Plant

The open-loop plants of single-stage actuated HDDs reflect
the dynamics of their VCMs, which resemble the ones of double
integrators or other similar low-pass-filter-type systems. In the
context of track-following control, the dynamics of HDDs have
been described extensively. Among many other works, we can
mention [21]-[25]. Here, the open-loop plant of the system is
denoted by P. An LTI model of P, denoted by 13, is obtained
by system identification. Since the system is slightly damped,
the system identification of P is performed in closed-loop em-
ploying the LTI controller K connected to P in the classical
negative feedback configuration, as shown in Fig. 2, resulting
in the closed-loop plant M given by

M = PK(1+ PK)™" (2)

In this case, we choose to employ an indirect identification
method [26], because the excitation signal uy; to the closed-
loop plant M can be chosen to be independent of the disturbance
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Fig. 3. Left Plot: Bode plot of the identified open-loop plant p. Right Plot:
Bode plot of the identified closed-loop plant G.

signals affecting the open-loop plant P. Thus, first an estimate
qf the closed-loop plant M, denoted by M, is found, and then
P is computed as

P=M [K(l—]\?[)]il. 3)

Before performing the system identification of P, a plant
model is not available, therefore, K is chosen to be a PD con-
troller that is tuned on-line. Thus, after selecting suitable gains
for K, a 20th-order closed-loop plant model M is estimated
using the n4sid subspace algorithm [27] from 40000 input-
output data points. This yields an open-loop plant model which
is reduced to a 2nd order model after performing a balanced
truncation. The resulting P is shown on the left in Fig. 3. It is
important to remark that the controller K and the plant M are
employed in the identification of the open-loop plant only, and
they are not mentioned in the rest of this paper.

B. Closed-Loop System With LTI Feedback Control

In order to robustly stabilize the slightly damped dynamics
of the HDD, and also to maintain the HDD head over a chosen
track, we first design an LTI controller. The LTI feedback con-
trol loop is shown in Fig. 4. The classical digital controller
C consists of an integrator and a notch filter. The integrator
gain and notch parameters were tuned to maximize the distur-
bance-rejection bandwidth and to force the HDD head to stay on
a desired track. The input w in Fig. 4 will become the adaptive
control command, and the output y is the position of the head’s
center over a given HDD platter. The output disturbance signal
wo represents the combined effect of all the disturbances acting
on the system, and the signal y,.¢ is the reference signal that the
HDD head must follow. The closed-loop LTI system in the top
diagram in Fig. 4, without g, can be represented as in the bottom
diagram in Fig. 4 with

G =P(1+PC)™! “)
w = (14 PC) Y (wy + PCyret). 3)
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Fig. 4. Upper Diagram: Block diagram of the LTI feedback control system.
Bottom Diagram: Equivalent model with w = (1 + PC) ™" (wo + PCyrer)-
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Fig. 5. Left Plot: Estimates of the sensitivity functions, Sand N. Right Plot:
Bode plot of a typical identified model ;. The Bode plot of W; is compared
with the spectrum of the experimental signal w; plotted in red.

The closed-loop plant dynamics were reidentified by the
aforementioned subspace method and labeled as G. The Bode
plot of @ is shown on the right in Fig. 3. The output and com-
plementary sensitivity functions, S and NN, of the closed-loop
LTI system are

S=y/wo = (1+PC)™" (6)
N =y/yret = PC(1 4+ PC) L. ©)

An estimate of S, computed as S = (1+ [:’C)’l, is shown in
blue on the left in Fig. 5. Because the gain of the controller C
was chosen to maximize the error-rejection bandwidth, the LTI
loop amplifies high-frequency disturbance above about 200 Hz.
Also, an estimate of the complementary sensitivity function NV,
computed as N = PC(1 4+ PC)~!, is shown in green on the
left in Fig. 5. This plot shows that for a constant signal y,.f, we
can consider ¥ = Nypef.

C. Disturbance and LTI Disturbance Models

The use of disturbance models has been recently reported
to be useful for analyzing the steady-state behavior and theo-
retical performance of minimum-variance adaptive control sys-
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Fig. 6. Close-ups of the upper-left plot in Fig. 5. Using linear scale, these plots
show some spikes and narrow-band peaks over frequency (Hertz). The upper
plots show close-ups of two spikes at frequencies that are multiples of 120 Hz.
The bottom plots show the close-ups of narrow-band peaks at frequencies that
are not multiples of the HDD platters rotation frequency.

tems [13], when the disturbance acting on the system is sta-
tistically stationary. The main idea is that stationary stochastic
disturbances affecting the system dynamics can be modeled as
outputs from finite-dimensional stable LTI systems excited by
white sequences with zero mean.

Besides u, the input signals driving the system are wg, which
can be considered stochastic, and ¥y, which is a deterministic
signal, often taking a constant value. The output of main impor-
tance here is ¢, which contains all the information used to tune
the adaptive controller. The sequences wq and ¥,.¢ are indepen-
dent. Subsequent analysis uses the sequences

wy = (1+PC)_1’U}0, 1 :PO(1+PC)_1yref. ®)

The adaptive controller in Fig. 8, in the next section, implic-
itly identifies certain statistics of w but otherwise requires no
information about any of the sequences in (8). For theoretical
analysis of the performance of the adaptive controller, here, we
assume that the sequence wy in (8) is stationary with zero mean.
Also, the analysis assumes the disturbance models

wo = W()é‘w, w1 = W18“, (9)
where Wy and W are finite-dimensional stable LTI filters, and
the sequence ¢,, is independent, stationary, white and zero mean
with

B{20} =1

Notice, that W; = SWj and that W and W; can be in-
terpreted as open-loop and closed-loop disturbance models, re-
spectively. It must be emphasized that none of this models are
needed for implementing the adaptive controller. The distur-
bance model W; is required for estimating the theoretical op-
timal steady-state gains in the adaptive controller and the corre-

(10)
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Fig. 7. Upper Diagram: Theoretical closed-loop system. G(z): Closed-loop
plant; W : Disturbance model; NV : Complementary sensitivity function. Bottom
Diagram: Equivalent system assuming Yrer = N Yref-

sponding performance. Notice that considering the disturbance
model concept, the error signal y can be represented as in the
upper diagram in Fig. 7. Also notice that, considering the fre-
quency response of N in Fig. 5 and that y,.r takes a constant
value, it is reasonable to assume that .o = N¥yef, and there-
fore that the bottom and upper diagrams in Fig. 7 are equivalent.

Here, the disturbance model W is identified from experi-
mental output data taken with the LTI feedback loop closed,
with u = 0 and with the reference signal ¥,.+ taking a constant
value. This identification, performed using the ndsid system
identification algorithm in MATLAB, yields a state-space model
in innovations form. In principle, W; can be constructed as
W1 = (1 + PC)~'Wy, but since this construction would be
based on estimated models for P and Wy, we chose to identify
W1 directly. In this paper, considering that W is an abstraction
and not a physical system, the identified model is also denoted
by Wi and the hat symbol (*) is omitted.

A typical identified disturbance model W; with 256 states
is shown in blue on the right in Fig. 5. There, the magnitude
of W7 is compared with the estimated power spectrum of the
signal w1, plotted in red, computed using the MATLAB pwelch
function. Recalling the definition of pwelch in [28], if 1, (f)
is the estimate of the power spectral density (PSD) of the signal
w1 as function of the frequency f in Hz, then in order to com-
pare the power spectrum with the magnitude of the Bode plot of
W1, we compute and plot 10 log,4[4680,,, (f)]. Fig. 6 displays
close-ups of the plot on the right in Fig. 5 showing four exam-
ples of reasonable good matching between the power spectrum
of the signal w; and the Bode plot of Wy.

IV. MINIMUM-VARIANCE ADAPTIVE CONTROL

A. Adaptive Loop and Theoretical Performance

The control scheme considered throughout this paper is
shown in Fig. 8. There, all the systems involved are assumed
to be stable. The plant G is the closed-loop system generated
by the interconnection of P and C' as in Fig. 4, and G is an
identified model of G. The filter F' is adaptively computed
using w and @, as shown on the bottom part of the diagram in
Fig. 8. Also, for the analysis in this section, we assume that

A~

G=G H=1. (11)

)

w=wi +Nyref

F(z) < G(z) |

Adaptive Loop

Fig. 8. Block diagram of the adaptive control system.

For track following problems, like the one considered here,
it is also true that the signal y,.r takes a constant value, and
therefore, it follows that

Nyref = Yref (12)
which consequently implies that
'g:wl+GFUA)+Nyrcf_yrof:wl+GFﬁ} (13)

W= —GFi+§=—GFi+w +GFi=w;. (14)

Here, the adaptive filter F' has a FIR form, so that, it can be
written as

L
F(z) =) fiz™" (15)
=0

where 27! is the delay operator. In Fig. 8, F is adapted to min-
imize the RMS value of the tuning signal e, and therefore, the
objective function to be minimized adaptively is

J.(F) = RMS(e) = /E {2(")}.

Throughout this paper, the adaptation of F' is done by means of
the inverse QR-RLS algorithm in [10].

The tuning signal e is chosen because, when the gains of F’
have converged to steady-state values, the transfer functions F’
and G commute, so that, under the conditions in (11) and (12),
it follows that

(16)

e =1+ FGi = q. a7)
In general, during the transient time, the time-varying system
F' does not commute with G exactly, but as the experimental
results show, this discrepancy does not degrade the performance
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of the adaptive controller appreciably, so that, it can be stated
that by minimizing (16) the performance index

Jy(F) = RMS(9) = v E{5?(-)}

is approximately minimized as well. This argument can be for-
malized using the discrete-time swapping lemmas in [17].

For the disturbance model of w; discussed in Section III, the
sequence &,, is white with unit variance. Then, it follows from
Fig. 8 that the steady-state tuning and error signals, e and g,
satisfy

(18)

e=9=(1+FG)Wie, (19)
which implies that the steady-state RMS values of these signals,
for a given F, can be calculated as

Jo(F) = Jy(F) = H(l + Fé)W1H2. (20)
In steady-state, the adaptive control loop minimizes .J. (F') over
the set of FIR filters of order L. In order to write (20), we as-
sume that the LTI model W is able to capture completely the
statistical information contained in w;. For the purpose of the-
oretical analysis, with the assumed disturbance model and con-
dition (11), the minimization of J.(F’) over FIR filters of order
L can be formulated as a Wiener—Hopf problem [29]. A method
for finding the minimizing F for the indices in (20) is developed
in Appendix I.

B. Adaptive Tuning

In many applications, an important reason for employing
adaptive control systems for disturbance rejection is that dis-
turbance statistics often change with time. However, even if
wp remains stationary, the scheme in Fig. 8 is an appropriate
option, because it can be employed for tuning an LTI filter F'.
In principle, the system can be allowed to adapt until the filter
gains f; converge to their optimal values. However, for reasons
that will become clear in the next section, in the experiments
discussed here, it is more desirable to adapt the filter for a finite
duration only, since if the adaptive system is run indefinitely, it
would eventually become unstable.

In this subsection, we describe an adaptive tuning experiment
that gives us some crucial keys in the development of solutions
for the stability problems to be discussed in the next section.
Using the system in Fig. 8, the filter F' is adapted for 20 s, em-
ploying the inverse QR-RLS algorithm with a forgetting factor
of 0.999999. When using this algorithm as defined in [10], the
speed of adaptation depends on the initialization parameter ¢.
For example, in experiments over the track 15000 of head 0,
for e = 107, the system adapts slowly. The experiments sum-
marized in Table I were conducted over that HDD location with
the same value of ¢.

From an LTI viewpoint, a reason for stopping the adaptation
after 20 s of tuning is that the resulting filter achieves a per-
formance very close to the theoretical optimal one, computed
as in the previous subsection, but with one desirable property
that is shown in Table I. There, the main thing to notice is that,
for tuned filters with L = 6 and L = 36, the values of || F||;
and || F||« are considerably smaller than the values of || F||

TABLE 1
COMPARISON OF FILTERS

Theoretical ~ Experimental (20 s)
30, L=6 4.78 5.14
|Fllos L=6 16.39 1.86
IF|l;, L=6 16.39 2.58
30, L =36 4.36 4.96
[|1F|ls L =36 20.52 2.73
IIF|l;, L=36 33.28 5.08
iE Position Error Signal (PES)

LTI Controller C
LTI Controller C and Adaptive Controller - 6" Order

Y-Yref

o5l i
0o 10

20 30 40 50 60 70 80 90 100 110 120 130
Time (s)

Fig. 9. Time series from experiment using the scheme in Fig. 8, with H =

1. The adaptive filter F* has order 6. Notice that between Time = 100 s and

Time = 110 s, spikes begin to appear in the position error signal (PES). The
experiment was performed on track 15 000 of head 0.

and || F|| corresponding to the analytically computed optimal
filters. For example, for the case L = 6, the 20-s adaptively
tuned filter achieves a 30 performance that is only 7.53% higher
than the theoretical optimal one for the same L, while its H .,
norm is 8.81 times smaller. Similar results were obtained for
different values of L over several different tracks. This property
will be demonstrated to be useful in order to avoid problems
such as control-signal saturation and loss of stability robustness
to model uncertainty, while maintaining high performance.

V. EXPERIMENTAL ISSUES IN THE IMPLEMENTATION OF THE
ADAPTIVE LOoP

A. Trajectory of the Adaptive Gains

The purpose of this section is to show and explain the loss of
stability of the HDD system when under the control scheme in
Fig. 8 with H = 1. One might suspect, that this phenomenon
reflects lack of convergence of the adaptive scheme and param-
eter drift due to the absence of POE [17]. However, the review
of recent experimental and analytical studies [11], [13] suggests
that this undesirable phenomenon might be associated with the
high-frequency high gain of the steady-state optimal filter to
which the adaptive filter F' tends to converge, which might cause
control-signal saturation and eventual loss of stability.

In order to test the hypothesis proposed in the previous para-
graph, the system in Fig. 8, with H = 1, is allowed to adapt until
the HDD head swerves out of control, while monitoring the evo-
lution of the filter parameters. In Fig. 9, we show the time-series
of the PES for this experiment with the filter F’ adapting slowly
(initialization parameter e = 10~ as defined in [10]). The first
observation to make is that the system achieves an excellent per-
formance in fractions of a second, even though, the filter gains
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Fig. 11. Comparison of tuned filters (for 20 and 100 s) with the theoretical
computed one. Left Plot: 6th-order filters. Right Plot: 36th-order filters.

are far away from reaching their theoretical optimal values, as
shown in Fig. 10, ratifying the results in Table I.

Another observation to make is that several seconds before
the HDD head is drifted out of the track, spikes begin to ap-
pear in the PES. This is of particular interest, because in the
works reported in [11] and [13], it was shown that spikes might
appear in the position error as the result of a combination of
control-signal saturation and filters F' with large gains over the
high-frequency range. Thus, Fig. 9 suggests that the instability
appearing during the adaptation process is not related to param-
eter drift, but due to the fact that the steady-state optimal filter
F has a large gain over the high-frequency range. This idea is
supported by Figs. 10 and 11.

In Fig. 10, we show the trajectory of the gains f; during
adaptation, with . = 6. There, it is clear that the filter gains
are moving in the correct direction toward the points marked
with the symbol O, which indicate the positions of the theoret-
ical steady-state optimal gains f; computed by minimizing (20)
using the method in Appendix I. With the symbols A and <,

we mark the positions of the gains f; adapted for 20 and 100
s, respectively. For each gain, the symbol { lies in between the
symbols A and (), which demonstrates that the adaptive gains
are following the desired trajectory from A to (). The same be-
havior was observed in the case L = 36. The coefficients evolu-
tion plot for L = 36 is omitted. The resulting filters are shown
on the right in Fig. 11.

Considering the evidence given in the previous paragraphs,
we infer that the instability observed in Fig. 9 is caused by the
large values that the adaptive filter F' gains take, and that this
is not related to problems in the adaptive algorithm. The pro-
posed specific mechanism is as follows. The spikes in the PES
appear as the result of signal saturation. As the filter gains f;
grow toward their steady-state optimal values, the amplitudes
of the spikes in the PES also grow, and the predicted signal « in
Fig. 8, estimated using the LTI model G, becomes increasingly
less accurate. Thus, after some seconds, this process produces
spikes in the PES with amplitudes large enough, such that, the
HDD head is drifted out of the track. When this occurs, the infor-
mation used to tune the adaptive filter F' becomes completely er-
roneous, driving the system unstable. To further test these ideas,
we perform experiments in which the spiky and unstable behav-
iors are reproduced even when the adaptive filter F' is replaced
by a tuned LTI filter.

B. Control Signal Saturation

In [11], it was demonstrated that spikes might appear in the
control error signal as the result of a combination of an adap-
tive filter /' with high gain over the high-frequency range and
control-signal saturation. In that work, the signal becoming sat-
urated was the output u from the filter F' in Fig. 8. In the exper-
iments performed on the HDD with the results shown in Fig. 9,
none of the signals generated inside the digital controller be-
comes saturated. Then, if the spikes appearing in Fig. 9 are pro-
duced by signal saturation, then the question is, which is this
signal?

In order to elucidate this issue, we devise an experiment in
which the adaptive filter F' in Fig. 8 is replaced with the adap-
tively tuned LTI filter Fyp, where the subindex 90 indicates that
Fy is the filter adapted for 90 s as shown in Fig. 9 and Fig. 10.
Notice that after 90 s, which corresponds to Time = 110 s in
Fig. 9, the first spikes begin to appear in the PES. It is clear that
replacing the adaptive filter F' with the LTI system Fyg is equiv-
alent to defining

Ugo = Foo(1 + GFyp) 1)
and then connecting the new LTI controller C'— Uy to the open-
loop plant P, i.e., the system C'is replaced with the system C —
Uy in the upper diagram of Fig. 4. The experimental results are
shown in Fig. 12. As expected, spikes appear in the PES without
driving the system unstable. This behavior can be explained by
the block diagrams in Fig. 13. There, the upper block contains
the saturation block Sat, which sets the value of the signal vgus
to —a or @ when |v(-)| > «a. At this point the existence of the
saturation block is a matter of speculation, therefore, the value
of « is unknown.
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Fig. 13. Upper Diagram: Saturation model explaining spikes in time series
in Fig. 12. Bottom Diagram: Equivalent model. Notice that the mapping from
Vsat — U 1O Ysae 1S the input sensitivity function o .

To test the idea that the spikes appearing in the PES are caused
by saturation, first notice that the top and bottom block diagrams
in Fig. 13 are equivalent, and that the mapping from vg,t — v to
Usat 1S the input sensitivity function

Igo = P14 P(C — Ug)] *. (22)
Also, notice that given that the disturbance affecting the system
has a significant amount of high-frequency content and that the
prediction filter Foy has a high-pass shape, the signal v has a
significant amount of high-frequency content as well. This in-
dicates that similarly to the case presented in [11], the signal
Vsat — v 18 a signal composed of isolated impulses or sporadic
group of impulses, and consequently many of the spikes in the
PES should be isolated impulse responses of the system Igg.
Thus, the obvious way to test our saturation hypothesis is to
compare the shape of several spikes in Fig. 12 with the impulse
response of the system Igg in (22). If in this comparison there are
several spikes that resemble the shape of the impulse response of
Iy, then, saturation affecting the signal v, as modeled in Fig. 13,
would be the most reasonable explanation for the appearance
of spikes in the PES. Empirical evidence supporting the satura-
tion explanation is shown in Fig. 14. There, it can be observed
that in these four cases, the spikes in the PES clearly resemble
the shape of the impulse response of Iy, as expected. However,
in many other spikes the resemblance is not that obvious. This
slight discrepancy is explained by the fact that some spikes are
not produced by a single impulse, but by a small group of con-
secutive impulses.
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Fig. 14. Empirical evidence supporting the model in Fig. 13. Spikes from the
time series in Fig. 12 are compared to the scaled impulse response of Igg.
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Fig. 15. Block diagram of simulations with LTI controller Usg,. Block labeled
Sat represents control saturation.

Considering the ideas and results in the previous paragraphs
and given that in the experiment the signal vg,¢ is not avail-
able for measurement, we devised a simulation to illustrate the
phenomenon completely. The simulation diagram is shown in
Fig. 15. There, we use the LTI controllers C' and Ugq, we choose
an arbitrary value of a = 0.1 V, such that, spikes appear in the
PES, and we use a disturbance signal w;, which is a sequence
recorded from a real-time experiment.

The simulation results are summarized in Fig. 16. There, the
left-upper plot compares the simulated linear and saturated po-
sition error signals. Notice that, as in the experimental PES in
Fig. 12, spikes appear in the simulated saturated PES, while they
do not appear in the simulated linear PES. The left-bottom plot
compares the corresponding signals v and vg,¢. To explain the
appearance of spikes in the saturated PES, notice that, as pre-
dicted in the previous paragraphs, for this disturbance sequence
w1, the controller C' — Uy generates a signal v with a signif-
icant high-frequency content so that vs,y — v is composed of
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Fig. 16. Results from the simulations in Fig. 15. Left-Upper Plot: Simulated
linear and saturated PES showing the nature of the spikes. Left-Bottom Plot:
Signals v and v, from linear and saturated simulations. Right-Upper Plot:
Close-up of the plot of APES. Right-Bottom Plot: Close-up of the plot of the
signal veay — v.

isolated impulses and sporadic groups of impulses as shown on
the right-bottom side of Fig. 16, which is a close-up of the plot
of vsat — v. In order to show the absolute effect of v,; — v on
the PES, a close-up of APES = %sat — Ulin = Ysat — Ylin 1S
shown on the right-upper side of Fig. 16. Notice that APES is
exactly the output from Iy for the input v,y — v. This explains
the nature of the spikes appearing in the simulated saturated PES
(Signal gsat)

Thus, taking into account the information provided by the
previous experiments and simulations, the natural conclusion is
that the spikes appearing in the position error shown in Fig. 9
can be explained by the saturation model in Fig. 13. A similar
phenomenon has been observed in the optical experiments and
simulations presented in [11]-[13], where the signal that satu-
rates is the output from the filter F'. In the case of HDDs, satu-
ration can be explained as the direct consequence of the limited
output range of the electronic circuits forming part of the con-
troller-actuator interface. Nevertheless, in the spirit of the sci-
entific method [30], if all the information that the experimenter
has available is the plot in Fig. 9, then the connection between
instability and saturation is not obvious, and consequently, such
conjecture must be tested experimentally.

From a stability point of view it is fair to say that saturation, if
it is severe enough, will drive the system unstable. As suggested
by the experiments and simulations shown in this subsection,
saturation results from filters F' with large high-frequency gains,
being this the ultimate cause of the instability shown in Fig. 9.
However, assuming an LTI filter F', a natural question to ask
is whether a relationship between the H., norm of F' and the
classical indices of stability robustness, gain and phase margins,
can be established. This issue is explored in the next subsection.

C. Stability Robustness From a Classical LTI Viewpoint

In this subsection, we look for a connection between predic-
tion filters F' with high-frequency high gains and loss of sta-
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Fig. 17. Left Plot: Bode plot of the open-loop gains Loy and L0, showing
all stability margins. Right Plot: Minimum gain and minimum phase margins
versus tuning time 1. The discontinuity in the right-bottom plot is explained
due to the fact that each of the loop gains L+ has several stability crossings.

bility robustness from a strict LTI viewpoint. In case that a clear
connection was established between the both, the appearance of
spikes in the position error and the loss of stability in the system
would have an alternative explanation.

To begin with, we define

N

Ly =P(C—-Uyp), Up=F1+GF)™' (23)
with T' € [20, 100] indicating the amount of time that the filter
Fr has been tuned as shown in Fig. 10, using the scheme in
Fig. 8. Notice that as shown in Fig. 11, the H., norm of Frp
grows along with 7'. The open-loop gain systems Lz are em-
ployed to compute gain and phase margins as functions of 7T'.
On the left in Fig. 17, we compare the open-loop gains Lo and
L100. The first characteristic to notice is the great similitude be-
tween the two Bode plots, which define very similar stability
margins. This is counterintuitive because as shown in Fig. 11
the filters Fb and Fgg have very different Bode plots.

On the right in Fig. 17, we show minimum gain and min-
imum phase margins of the closed-loop system as function of
the tuning time 7. Notice that, in this case, there is no clear
connection between adaptation time and these classical single-
input—single-output (SISO) LTI indices of stability robustness.
The discontinuity in the right-bottom plot in Fig. 17 is explained
due to the fact that each of the loop gains L1 has several stability
crossings. For example, for Lyg the minimum crossing angle is
positive and for Lo the minimum crossing angle is negative.

The main conclusion from the analysis in the previous para-
graphs is that the systems Uz, computed using the adaptively
tuned filters Fr, define controllers C — Uy that generate ro-
bustly stable closed-loop systems from an LTI viewpoint, and
therefore, this kind of analysis loses relevance, even if F' is
LTI, when nonlinear phenomena, such as saturation, are present
in the system. A different approach is attempted in the next
subsection.
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Fig. 18. Typical feedback connection.

D. A General Notion of Stability Robustness

Thus far, we have considered perfect matching between the
physical system and the LTI identified model of the closed-loop
plant, i.e., G = G, which in general is unrealistic. Thus, for
purposes of analysis, in this subsection, we consider additive
uncertainty, i.e.,

G=G+Ag (24)

where G is, for now, assumed to be LTI and therefore saturation
and other nonlinearities are not present in the system. Then, it
is clear that the upper part of the scheme in Fig. 8 can be put as
shown in Fig. 18.

From an LTI viewpoint, we follow the following analysis.
After convergence has been achieved, the filter F' can be con-
sidered to be LTI. Also, it is clear that the scheme in Fig. 18 is
well posed, therefore, a sufficient condition for BIBO stability
is

[AG[h[[F]lr < 1. (25)
Similarly, a sufficient condition for asymptotic stability is
[AG]leolFlloe < 1. (26)

These conditions suggest that filters F' with smaller norms make
the stability of the whole scheme more robust to additive un-
certainty in the plant model G. Notice that for the special case
G = G, the adaptive scheme is always stable as long as the
norms of F' remain bounded. Conditions (25) and (26) might
seem rather conservative and unpractical. However, they rein-
force the idea that filters /' with high gains are undesirable, not
only because they might produce saturation, but also because
filters F' with norms small enough make the control scheme ro-
bustly stable to plant model uncertainty.

Finally, it should be noted that the assumptions that F' has
converged and that G is LTI can be relaxed and the conditions
in (25) and (26) remain essentially the same except for the re-
placement of || - ||1 by || - ||le.. —¢.. , defined as in [31], and the
replacement of || - ||oo by || - ||¢,— ¢, » defined as in [31]. This pro-
vides us with a more general notion of stability robustness and
a better guideline for design.

VI. FREQUENCY-WEIGHTED ADAPTIVE CONTROL

Thus far, we have established a clear relationship between
prediction filters F' with high gain over the high-frequency range
and the appearance of spikes in the PES due to saturation, and
also, with loss of stability robustness, all which might eventually
drive the system out of control. As we showed in Section IV, a
way to deal with these problems is to tune an LTI filter F' for a
finite duration. This is reasonable because high performance can

be achieved with suboptimal filters as displayed in Table I. The
problem with that approach is that we lose the adaptive capa-
bilities of the scheme in Fig. 8, which could imply a noticeable
performance degradation if statistical variations occurred in the
disturbance signal wq in Fig. 4.

In [11], it was shown that the use of frequency weighting is an
effective way to modify the frequency response of the theoret-
ically computed steady-state prediction filter F', and therefore,
modify the trajectory of the adaptively computed gains f;. Here,
frequency weighting is introduced by the use of a weighting
filter H in the scheme shown in Fig. 8.

The frequency response of the steady-state F' depends on the
frequency content of the disturbance, as well as the plant transfer
function. However, fundamentally, F' predicts the disturbance,
and prediction filters typically have large high-frequency gains.
A way to see that is that the minimum-variance F' is, in a cer-
tain sense, an approximate inverse of the plant transfer function
G, which rolls off at high frequencies, as shown by the Body
plot of G in Fig. 3. In the adaptive control loop, a filter F' with
large high-frequency gain would amplify high-frequency dis-
turbance and sensor noise, and increase the sensitivity of the
closed-loop system to high-frequency modeling error in G, cre-
ating the problems already studied in Section V.

The question then is, what type of weighting filter H will
lead to an FIR filter F' with reduced high-frequency gain? The
somewhat counterintuitive answer is a high-pass filter H. The
sense in which F' inverts GG is that ' minimizes the Hs-norm
of 1+ FG weighted by Wi as in (20). Thus, it is clear that the
incorporation of a high-pass H, as in Fig. 8, would penalize the
high-frequency gain of F'. When using the weighting filter H
the tuning signal becomes H e, and consequently the theoretical
minimization index is

Jue(F) = || (1 +FC;)W1H2 @7)
which can be minimized employing the method in Appendix I,
after replacing W; with HW;. Notice, that when using fre-
quency weighting the theoretical performance is still given by
I|(1 4+ FG)W1]|, as in (20).

The selection of an adequate high-pass filter H is made
heuristically. Thus, the parameters of H are treated as tuning
parameters of the adaptive controller in Fig. 8. The tuning
process can be performed using simulations in combination
with experimental data, or by minimizing (27) with the use
of an offline identified disturbance model W;. Here, H is
an 8th-order FIR filter computed using standard digital filter
design methods, where the main tuning parameter is the cutoff
frequency of H. Thus, a graphical relationship can be drawn
showing the tradeoff between the cutoff frequency of H and the
3o performance index, as shown in the bottom plot of Fig. 21.

On the left in Fig. 19, we show the Bode plots of the the-
oretically computed optimal filters F' employing high-pass
weighting filters H with four different cutoff frequencies (no
filter, 0.7, 1.0, and 1.3 kHz). There, the effectiveness of using
frequency weighting can be clearly appreciated, since the filter
gain over the high-frequency range is decreased dramatically.
The plot on the right in Fig. 19 compares the theoretically
computed and the experimentally obtained filters F' employing
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Fig. 19. Left Plot: Bode diagrams of optimal filters F' theoretically computed
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Value

a weighting filter H with a cutoff frequency of 1.3 kHz. The
plots in Fig. 19 along with the plots in Fig. 20 demonstrate
that by incorporating frequency weighting, the steady-state
solution, to which the gains f; converge, can be modified,
making possible the implementation of the adaptive scheme in
Fig. 8 in a robust manner and without running into problems
such as control-signal saturation or loss of stability robustness.
Notice, that in Fig. 20 the adaptive parameters f; reach the
steady-state values significantly fast. This is because the initial-
ization parameter of the adaptive filter, €, is set to 10~16_ The
forgetting factor is the same that in the experiments presented
in Section IV-B.

The use of frequency weighting implies a tradeoff between
filter gain reduction and performance degradation. A study of
how frequency weighting affects performance is summarized
in Fig. 21. There, the upper plot shows the value of ||F||o as
function of the cutoff frequency of H, the middle plot shows the
value of || F'||; as function of the cutoff frequency of H, and the
bottom plot shows the performance index 3o as function of the
cutoff frequency of H. In these three plots, the theoretical values
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Fig. 21. Upper Plot: Value of || F|| - as function of the filter H cutoff fre-
quency. Middle Plot: Value of || F'||; as function of the filter H cutoff frequency.
Bottom Plot: Performance index 3¢ as function of the filter H cutoff frequency.

are marked with blue hollow circles and the experimental values
with solid red squares. These results show the dramatic filter
norm reduction achievable with the use of appropriate weighting
at the expense of some performance degradation.

VII. ITERATIVE ADAPTATION

In the previous sections, we explained that filters F' with
large gains are undesirable because this might generate prob-
lems such as control-signal saturation or loss of stability robust-
ness. From Table I it is clear that adaptive tuning, i.e., stopping
the adaptation after a finite duration, is a reasonable alternative
because in the tradeoff between norm filter reduction and per-
formance degradation, the former is significant and the latter
is almost negligible. However, this compromise is not always
desirable because the capability to adapt is lost, and therefore,
any change in the profile of the disturbance would result in sig-
nificant performance degradation. Another reason why adaptive
tuning might not be desirable is that at different locations of the
HDD the disturbance statistics are different.

In Section VI, we showed that frequency weighting is an
effective general method to deal with the problems presented
in Section V. However, in this particular case, considering the
characteristics of the disturbance affecting the HDD system,
another method can be attempted. The main idea is based on
the observation that, as shown in Section VIII, when tuning
low-order filters using the scheme in Fig. 8, the resulting tuned
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Fig. 22. Block diagram of new closed-loop plant G .
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Fig. 23. Evolution of filter gains f; over time. These gains were obtained from
the experimental implementation of the first iteration of the iterative adaptation
method on track 15000 of head 0.

LTI controller mainly rejects the low-frequency content of the
disturbance signal.

It is clear that for a fixed-gain tuned filter /', the scheme
in Fig. 8 is equivalent to the LTI closed-loop plant shown in
Fig. 22, where Uy = Fi(1 + éFl)’l and Fj is a filter tuned
as in Section IV-B. The signal ¢, in the LTI diagram in Fig. 22
has a low-frequency content that is significatively smaller when
compared with the low-frequency content in y in Fig. 8. Then,
if we replace G with G1 and G with a reidentified plant C;H in
the system in Fig. 8, the effect over the adaptive part should be
similar to using high-pass frequency weighting. To see this ef-
fect, notice that under assumption (11), frequency weighting is
equivalent to replacing wy with Hw;, where H is a high-pass
filter.

To test the idea proposed in the previous paragraph, we im-
plemented the system in Fig. 8§ employing (G; and G, with
H = 1. The effectiveness of this approach is demonstrated in
Fig. 23. There, it is clear that the filter parameters converge and
the adaptive system behaves robustly. The slight discrepancies
between the experimental and theoretical steady-state gains are
explained by the fact that the theoretical solution relies on iden-
tified models of the closed-loop plant and the disturbance model,
and therefore, it is conceivable that the models, in this case, are
not as accurate as the identified models in Section III.

The experimental results in Figs. 23 and 24 show that with
this simple method, two important things are achieved. The first
one is that, in this particular case, the system can be allowed to

Performave Index 3c vs. lteration

Iteration

Fig. 24. Performance as function of the number of iterations. The first iteration
improves the system performance significantly. The improvement achieved by
the 5th iteration over the 4th one is negligible. The experiments were performed
on track 15000 of head 0.

adapt indefinitely because the steady-state filter gains f; corre-
spond to a filter with high-frequency gain small enough, such
that, the problems in Section V do not appear. The second one
is that the performance index 3o is improved noticeable. This
is explained by the facts that in presence of stationary distur-
bances, the adaptive controller achieves steady-state, and that
in presence of non-stationary disturbances the controller adapts
indefinitely.

The process described in the previous paragraph can be re-
produced indefinitely, for tuning new LTI controllers, until no
further improvement in performance is achieved. Repeating the
process iteratively generates transfer functions G;,7 = 1,2, ...
defined as

-1

Gi=P|1+P|C-)"T; (28)

i=1

with U; = F;(1 + G'j_le)_l, where Fj is a fixed-gain filter,
adaptively tuned according to Fig. 8, employing the corre-
sponding identified closed-loop plant G j—1 at iteration j — 1.
Notice that when using this method for tuning controllers,
at a given iteration ¢, the closed-loop transfer function G; in
(28) is not explicitly computed but estimated offline using the
ndsid algorithm according to the same procedure explained in
Section III. Therefore, this method increases the computational
burden of the tuning process but not the computational com-
plexity of its real-time implementation. The improvement in
performance versus iteration number is summarized in Fig. 24.
There, it can be observed that a substantial improvement is
achieved with the first iteration, that a moderate improvement
is achieved with the second, third, and fourth iterations, and
that no noticeable improvement is achieved with the fifth one.
The improvement with the first iteration is explained due to
the fact that F, reaches steady-state while F} is stopped before
reaching steady-state.

VIII. SUMMARY OF EXPERIMENTAL RESULTS

The main purpose of this section is to show that the methods,
results and ideas presented in the previous sections are valid not
only for the case head O/track 15 000, but also for the hard drive
in general. This is immediately inferred from the data summa-
rized in Table II, where the performance achieved at various
locations of the HDD using various methods is shown. This
comparison is relevant to the validation of the control methods,
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TABLE II
PERFORMANCE INDEX 30 OF THE POSITION ERROR SIGNAL (PES) AS PERCENTAGE OF THE TRACK WIDTH. IN ALL CASES L = 6

Head 0 Head 1

Vref =10 000 yror =15 000  yyp =20 000 | yrep =10 000  yrr =15 000  y,r =20 000
LTI controller C 18.1429 17.2467 20.6328 16.3020 18.6647 22.6426
C + tuned F (tuning time 7' =20 s) 5.2305 5.1433 4.9573 5.3033 5.2811 4.9583
C + tuned F (tuning time 7 =80 s) 5.1767 5.0238 4.8593 5.2290 5.1197 47372
C + adaptive F with high-pass H (cutoff frequency 1.0 kHz)  5.8339 5.7916 5.4132 5.6843 5.7002 5.2829
C + adaptive F with high—pass H (cutoff frequency 1.3 kHz)  6.6063 6.5195 5.9428 6.2459 6.4904 5.6888
C + iterative adaptation (1% iteration) 5.0088 4.8228 47827 5.0489 49219 4.7001

because at different locations of the HDD, the plant systems,
and disturbances are significantly different. In order to have
statistically comparable information, the experiments shown in
Table II were conducted consecutively, therefore, those do not
reflect changes in the environment. However, numerous exper-
iments conducted under different temperature conditions con-
firmed the validity of the methods presented here.

A first conclusion to be extracted from Table II, is that the
scheme in Fig. 8 is suitable and effective for tuning minimum-
variance controllers, since the controller tuned at the location
head O/track 15 000 achieves excellent performances at different
locations of the HDD. In this respect, it is important to note
that the best performances displayed in Table II are substantially
better than the ones achieved in the same commercial HDD,
using the AQC method [5].

A second conclusion is that the fully adaptive frequency-
weighting controller works robustly on all the HDD locations
where it was implemented. As predicted in Section VI, there
exists a clear tradeoff between the cutoff frequency of the high-
pass weighting filter H and performance. A third and last con-
clusion is that, in this particular case, employing the iterative
adaptation method is an excellent choice, since stability robust-
ness and high performance can be achieved simultaneously. No-
tice that at some locations of the HDD, the 30 value is as good
as 4.7. The downside of this method is that it might not work on
other systems.

Finally in this section, we graphically summarize in Fig. 25
the experimental results obtained at the location head 0/track
15000 using an adaptively tuned filter F' (plots on the left in
Fig. 25), and the ones obtained using the frequency-weighting
adaptive scheme (plots on the right in Fig. 25). There, the most
important thing to remark is that frequency weighting allows us
not only to implement fully adaptive schemes robustly, but also
it allows the system to adapt fast. This is clear from the fact that
when using frequency weighting, the system achieves 95% of
its steady-state performance in 8 ms. It should be noted that in
the cases summarized in Fig. 25, and in all the cases shown in
Table II, the HDD system behaved robustly, being possible to
run it for indefinite amounts of time, without the appearance of
spiky or unstable responses.

IX. CONCLUSION

In this paper, we presented an analytical and experimental in-
vestigation of the main issues involved in the design and imple-
mentation of minimum-variance adaptive systems for track-fol-
lowing control of hard disk drives. A significant part of this work
was devoted to the problems of control-signal saturation and
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Fig. 25. Experimental results obtained at location head O/track 15000 using
an adaptively tuned filter F (plots on the left), and the ones obtained using the
frequency-weighting fully adaptive scheme (plots on the right).

loss of stability robustness, caused by the presence in the adap-
tive loop of prediction filters with high gains over the high-fre-
quency range. In order to deal with these issues, we developed
and implemented two methods: frequency weighting and itera-
tive adaptation. The former is a general method first introduced
in [11], the latter was demonstrated to be an excellent choice in
this particular case, since it allowed us to achieve 3o values as
good as 4.7 at some locations of the HDD.
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APPENDIX I
SOLUTION TO THE MINIMIZATION OF (20)

The method used in this paper is a direct extension of the
solution to the classical Wiener filter problem described in [29].
The idea is to find the filter F'(2) = Zszo f12~! that minimizes
E{d(k) + [Fs](k)}2, with d = Wie,, and s = GWje,,, which
is equivalent to solving (20). From [29, Ch. 5], the vector f°
containing the optimal parameters is

Jo
[ A T (29)
Ir
where
r5(0) rs(1) rs(L) r4s(0)
rs(1) 75(0) rs(L —1) ras(1)
Re=| . : o : » Tds = :
ro(L) ro(L—1) rs(0) ras(L)

withrs(k) = E{s(n)s(n—k)} andrqs(k) = E{d(n)s(n—k)}.
Thus, the only thing left, is to find relations for 7 (k) and r 45 (k).
In order to do that, define the transfer function ® as the mapping
from e,, to z, with z(n) = [d(n)s(n)]T, and notice that

E{z(n)2"(n—k)} = [::% ”-“(k)} NE)

rs(k)

To compute (30) consider any state-space realization of  given
by

z(n+1) =Agx(n) + Baey(n)

z(n) =Cox(n) + Daey(n). 31

Then, the relation

E{z(n+1)z"(n+ 1)} =Ae [E {z(n)2" (n)}] AL + BoBg,
(32)

follows immediately. Now, given that the random process €, (n)
is stationary and assuming that A is stable, it follows, as shown
in [32], that 7,,(0) = E{z(n)zT(n)} solves the discrete Lya-
punov equation

Agpr,(0)AL — 7,.(0) + Bs B3 = 0. (33)
Finally, after some algebraic manipulations it is clear that
_ Cqﬂ"m(())cg + D@Dz};, k=0 (34)
T | CoAkr,(0)CL + CoAY 1B DL, k>1

which yields the data needed to compute (29).
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